
1

Ekkart Kindler

Software Engineering 1
Special lecture: Modelling Behaviour

Ekkart Kindler
Technical University of Denmark
Informatics and Mathematical Modelling

2SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Overview

� Motivation and Idea
� Automata & StateCharts
� Interaction Diagrams

� Observations and Discussion

� Sequence Diagrams (in detail)

� Philosophy and Summary

Ekkart Kindler

1. Motivation and Idea

4SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Motivation

� In this course up to now:
Mainly structural models: class diagrams,
object diagrams, package diagrams of
software.

� Now: Modelling what the software
actually should do: its functionality and
behaviour.

Use cases talk

about functionality;

but at a very early

stage.

5SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
An Example

ignition
switch

rain
sensor

wiper

wiper
control

wiper

A component

diagram (but exact

syntax not relevant

here)

component port of a
component

connector

6SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
An Example

ignition
switch

rain
sensor

wiper

wiper
control

wiper

This is the structure!

How, does the system behave?

How should it behave?

2

7SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Behaviour of wiper control

wiper
control

engine
off

wiper
offi.on/w.off

i.off/w
.off

rd.rain/w.onrd.dry/w.off

i.off/w.off

i

rd

w

Message

wiper
on

on

Initial state

off

rain on

off

8SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Behaviour of wiper control

wiper
control

engine
off

wiper
offi.on/w.off

i.off/w
.off

rd.rain/w.onrd.dry/w.off

i.off/w.off

i

rd

w

wiper
on

I/O-Automaton

defines the behaviour

of the component:

Which message is

sent in response to

incoming messages.

9SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
An Example

ignition
switch

rain
sensor

wiper

wiper
control

wiper

One automaton for each component
(plus structure) defines the complete
behaviour of our “wiper system”.

10SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Behaviour of wiper control

wiper
control

engine
off

wiper
off

i.on/w.off

i.off/w.off

rd.rain/w
.on

rd
.d

ry
/w

.o
ff

i

rd

w

wiper
on

Complex
state

More complex form of

automaton: StateCharts.

More convenient models!

Many more subtleties!

Here, we do not go into

the details!

11SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Sequence Diagram

rain
sensor

ignition
switch

wiperwiper
control

turn key
on

rain

on

off

12SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Sequence Diagram

rain
sensor

ignition
switch

wiperwiper
control

on

rain

on

off

3

13SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Communication Diagram

ignition
switch

rain
sensor

wiper

wiper
control

1: on
2: off

3: rain

4: on

14SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Question

� Many different notations for modelling
behaviour:
� Automata / StateCharts
� Sequence Diagrams
� Communication Diagrams
� Activity Diagrams
� …

� Do they do the same?
� What is the best?

This, actually,
is a stupid
question!
Why?

15SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Observations

� Automata define the behaviour of a
single component or object (in interaction
with others): Intra-object behaviour

� One automaton define the complete
behaviour of a component / object

� Together with the structure, the
behaviour is fully defined

� Coming up with all the automata is quite
some work

16SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Observations

� Sequence diagrams and communication
diagrams are just different graphical
representation of the same thing:
in UML interaction diagrams

� The choice between them is mostly a
matter of taste

17SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Observations

� An interaction diagram defines just one
possible behaviour

� Only several interaction diagrams together will
define the full behaviour (when did we provide
enough of them?)

� Interaction diagrams define the interaction
between different components or objects:
Inter-object behaviour

�Interaction diagrams are good for specifying
expected behaviour (also non-expected
behaviour) and protocols

�This can later be “implemented” by automata
for the components

18SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Overview

Requirements System model

ignition
switch

rain
sensor

wiper

wiper
control

wiper

rain
sensor

ignition
switch

wiperwiper
control

turn key

on

rain

on

off

engine
off

wiper
offi.on/w.off

i.off/w

.off

rd.rain/w.
on

rd.dry/w.
off

i.off/w.off wiper
on

structure

behaviour

4

Ekkart Kindler

2. Sequence Diagrams

In the rest of today’s lecture:

UML 2.0 interaction diagrams (in

“sequence diagram notation”)

20SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Concepts

� Lifelines (roles / instances)
� Messages
� Calls, returns &

asynchronous messages
� Activation

21SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

o:Order item 1 item 2product 1 product 2 :Customer

getPrice()
getPrice()

getPrice()

amount()

sum1

getPrice()
getPrice()

amount()

sum2

getCustomerDiscount()

discount
total

price1

price2

22SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

o:Order item 1 item 2product 1 product 2 :Customer

getPrice()
getPrice()

getPrice()

amount()

sum1

getPrice()
getPrice()

amount()

sum2

getCustomerDiscount()

discount

Lifeline

Message

EventsEvents

total

23SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Concepts

� A lifelines represent one participant in an
interaction (in UML 1.x: objects, in UML 2.x roles)

� The roles have names of the form
name : Class

both parts are optional
� The lifeline represents the (part of the)

life of the participant and its interactions
� A messages connects two lifelines;

the end points are events; the name of
the message refers to the behaviour
(method of a class)

24SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

o:Order item 1 item 2product 1 product 2 :Customer

getPrice()
getPrice()

getPrice()

amount()

sum1

getPrice()
getPrice()

amount()

sum2

getCustomerDiscount()

discount

Call (synchronous)

return
Self-
call

total
Activation

5

25SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Concepts

� Messages can be synchronous:
call ()and return ()

� Messages can be asynchronous (see wiper

exmpl.):
� The activation (optional) indicates the

span at which a method call is active in a
participant
(technically: there is a frame on the stack for this method)

� For self-calls, activations “pile up”

26SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

o:Order item 1 item 2product 1 product 2 :Customer

getPrice()
getPrice()

getPrice()

amount()

sum1

getPrice()
getPrice()

amount()

sum2

getCustomerDiscount()

Returns are
sometimes
omitted

total

27SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Concepts

� Parameters
� Creation and deletion of objects
� Found and lost messages
� Ordering

28SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

item product

getPrice(amount)

amount()

Methods may have
parameters (from
return values or local
attributes)

29SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

o:Order product
insertItem(no,
product)

item

deleteItem(item)

Creation

Deletion
Deletion (self-
deletion)

setAmount(no)

Note: relation between

different occurrences of same

name (and role names)

30SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Concepts

� Normally, message start and end at
some event (or gate)

� Messages, that come from nowhere are
called found messages

� Messages, that end nowhere are called
lost messages

6

31SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

o:Order
insertItem(no,
product)

item

deleteItem(item)

Lost
message

Found
message

Note: This is a technical

example. In this case, it would

be better to make the “calling

environment” explicit.

32SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

item 1 item 2product 1 product 2

getPrice()

amount()

getPrice()

amount()

General ordering:
Expresses an order
that is not expressed
otherwise (by
messages or lifeline)

33SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Concepts

� Interaction fragments
� State Invariants
� Continuations
� Co-regions

34SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

o:Order item

getPrice()

getPrice()

price

total

getnextItem()

item

getnextItem()

item

loop [item <> null]

sd

Interaction fragment
(here: loop)

Guard

GateGate
{item.price > 0 }

State invariant

35SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Concepts

� Interaction fragments
� sd (surrounds the complete sequence

diagram)
� Loop (iteration)
� alt (choice / if then else)
� opt (optional / if then)
� par (fragment operands run in parallel)
� ref (reference to another definition)
� …

Interaction fragments have

much modelling power, but

tend to be “programming” and

not what sequence diagrams

were originally made for or

really good at!

36SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

client server

question

yes
alt

sd Question

no

okay

ko

Continuation
(definition); use see
next slide

Continuation
(definition);
use: see next slide

7

37SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

client server

request

alt

sd Protokol

request

okay

ko

Continuation (use)

other

ref

Question

Continuation (use)

38SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
UML Behaviour Diagrams

� Use Cases
� Interaction Diagrams

� Sequence Diagrams
� Communication Diagrams

� Activity Diagrams
� State Machines (StateCharts)

