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Overview

� Motivation and Idea
� Automata & StateCharts
� Interaction Diagrams

� Observations and Discussion

� Sequence Diagrams (in detail)

� Philosophy and Summary
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1. Motivation and Idea
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Motivation

� In this course up to now:
Mainly structural models: class diagrams, 
object diagrams, package diagrams of 
software.

� Now: Modelling what the software 
actually should do: its functionality and 
behaviour.

Use cases talk 

about functionality; 

but at a very early 

stage.
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An Example

ignition
switch

rain
sensor

wiper

wiper
control

wiper

A component 

diagram (but exact 

syntax not relevant 

here)

component port of a 
component

connector

6SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
An Example

ignition
switch

rain
sensor

wiper

wiper
control

wiper

This is the structure!

How, does the system behave? 

How should it behave?
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Behaviour of wiper control
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Behaviour of wiper control

wiper
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I/O-Automaton 

defines the behaviour 

of the component: 

Which message is 

sent in response to 

incoming messages. 
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An Example

ignition
switch

rain
sensor

wiper

wiper
control

wiper

One automaton for each component 
(plus structure) defines the complete 
behaviour of our “wiper system”.
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Behaviour of wiper control
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Complex 
state

More complex form of 

automaton: StateCharts.

More convenient models!

Many more subtleties! 

Here, we do not go into 

the details!
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Sequence Diagram

rain
sensor

ignition
switch

wiperwiper
control

turn key
on

rain

on

off
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Sequence Diagram
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Communication Diagram

ignition
switch

rain
sensor

wiper

wiper
control

1: on
2: off

3: rain

4: on
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Question

� Many different notations for modelling 
behaviour:
� Automata / StateCharts
� Sequence Diagrams
� Communication Diagrams
� Activity Diagrams
� …

� Do they do the same?
� What is the best? 

This, actually, 
is a stupid 
question!
Why?
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Observations

� Automata define the behaviour of a 
single component or object (in interaction 
with others): Intra-object behaviour

� One automaton define the complete 
behaviour of a component / object

� Together with the structure, the 
behaviour is fully defined

� Coming up with all the automata is quite 
some work
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Observations

� Sequence diagrams and communication 
diagrams are just different graphical 
representation of the same thing:
in UML interaction diagrams

� The choice between them is mostly a 
matter of taste
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Observations

� An interaction diagram defines just one 
possible behaviour

� Only several interaction diagrams together will 
define the full behaviour (when did we provide 
enough of them?)

� Interaction diagrams define the interaction 
between different components or objects:
Inter-object behaviour

�Interaction diagrams are good for specifying 
expected behaviour (also non-expected 
behaviour) and protocols

�This can later be “implemented” by automata 
for the components
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Overview

Requirements System model
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2. Sequence Diagrams

In the rest of today’s lecture: 

UML 2.0 interaction diagrams (in 

“sequence diagram notation”)
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Concepts

� Lifelines (roles / instances)
� Messages
� Calls, returns &

asynchronous messages
� Activation
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Example

o:Order item 1 item 2product 1 product 2 :Customer

getPrice()
getPrice()

getPrice()

amount()

sum1

getPrice()
getPrice()

amount()

sum2

getCustomerDiscount()

discount
total

price1

price2
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Example

o:Order item 1 item 2product 1 product 2 :Customer

getPrice()
getPrice()

getPrice()

amount()

sum1

getPrice()
getPrice()

amount()

sum2

getCustomerDiscount()

discount

Lifeline

Message

EventsEvents

total
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Concepts

� A lifelines represent one participant in an 
interaction (in UML 1.x: objects, in UML 2.x roles)

� The roles have names of the form
name : Class

both parts are optional
� The lifeline represents the (part of the) 

life of the participant and its interactions
� A messages connects two lifelines;

the end points are events; the name of 
the message refers to the behaviour 
(method of a class)
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Example

o:Order item 1 item 2product 1 product 2 :Customer

getPrice()
getPrice()

getPrice()

amount()

sum1

getPrice()
getPrice()

amount()

sum2

getCustomerDiscount()

discount

Call (synchronous)

return
Self-
call

total
Activation
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Concepts

� Messages can be synchronous:
call (             )and return (             )

� Messages can be asynchronous (see wiper 

exmpl.): 
� The activation (optional) indicates the 

span at which a method call is active in a 
participant
(technically: there is a frame on the stack for this method)

� For self-calls, activations “pile up”

26SE 1 (02161 f08), Modelling Behaviour

Ekkart Kindler
Example

o:Order item 1 item 2product 1 product 2 :Customer

getPrice()
getPrice()

getPrice()

amount()

sum1

getPrice()
getPrice()

amount()

sum2

getCustomerDiscount()

Returns are 
sometimes 
omitted

total
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Concepts

� Parameters
� Creation and deletion of objects
� Found and lost messages
� Ordering
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Example

item product

getPrice(amount)

amount()

Methods may have 
parameters (from 
return values or local 
attributes)
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Example

o:Order product
insertItem(no,
product)

item

deleteItem(item)

Creation

Deletion
Deletion (self-
deletion)

setAmount(no)

Note: relation between 

different occurrences of same 

name (and role names)
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Concepts

� Normally, message start and end at 
some event (or gate)

� Messages, that come from nowhere are 
called found messages

� Messages, that end nowhere are called 
lost messages
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Example

o:Order
insertItem(no,
product)

item

deleteItem(item)

Lost 
message

Found 
message

Note: This is a technical 

example. In this case, it would 

be better to make the “calling 

environment” explicit.
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Example

item 1 item 2product 1 product 2

getPrice()

amount()

getPrice()

amount()

General ordering: 
Expresses an order 
that is not expressed 
otherwise (by 
messages or lifeline)
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Concepts

� Interaction fragments
� State Invariants
� Continuations
� Co-regions
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Example

o:Order item

getPrice()

getPrice()

price

total

getnextItem()

item

getnextItem()

item

loop [item <> null]

sd

Interaction fragment
(here: loop)

Guard

GateGate
{item.price > 0 }

State invariant
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Concepts

� Interaction fragments
� sd (surrounds the complete sequence 

diagram)
� Loop (iteration)
� alt (choice / if then else)
� opt (optional / if then)
� par (fragment operands run in parallel)      
� ref (reference to another definition)
� …

Interaction fragments have 

much modelling power, but 

tend to be “programming” and 

not what sequence diagrams 

were originally made for or 

really good at!
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Example

client server

question

yes
alt

sd Question

no

okay

ko

Continuation 
(definition); use see 
next slide

Continuation 
(definition);
use: see next slide
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Example

client server

request

alt

sd Protokol

request

okay

ko

Continuation (use)

other

ref

Question

Continuation (use)
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UML Behaviour Diagrams

� Use Cases
� Interaction Diagrams

� Sequence Diagrams
� Communication Diagrams

� Activity Diagrams
� State Machines (StateCharts)


