
Course 02158

Transactions

Hans Henrik Løvengreen

DTU Compute

Need for larger atomic actions

A

B

deposit()

withdraw()

balance()

deposit()

withdraw()

balance()

Transactions

• Transaction = atomic action spanning several concurrent objects

• Classic example: Transfer between bank accounts

• Transactions may be interactive

• Transaction may fail or be given up (abort).

• Often associated with persistent data objects (data bases)

Transaction Properties

Atomicity. All-or-nothing property.

Consistency. Should preserve system invariants.

Isolation. No interference (= atomicity).

Durability. Effect should remain.

Serializability

• A set of concurrently executed transactions are serializable if the operations on
the underlying objects can be reordered such that:

1. The sequence of operations for each transaction is preserved
2. The transactions follow each other in some sequence
3. The effect on the object states remains the same

Conflics

• Two operations are in conflict if they cannot always be swapped

• Operations on different objects do not conflict

• Single object conflicts may be characterized semantically, eg.

Read Write Incr
Read × ×
Write × × ×
Incr × ×

Serializability

A

B

T1

T2

300

500

IncrA(100) IncrB(−100)

IncrA(−200) ReadA(200) ReadB(400) Print(600)

+

200

400

Serializability — serialization

A

B

T1

T2

300

500

IncrA(100) IncrB(−100)

IncrA(−200) ReadA(200) ReadB(400) Print(600)

+

200

400

Serializability

A

B

T1

T2

300

500

IncrA(100) IncrB(−100)

IncrA(−200) ReadA(200) ReadB(500) Print(700)

+

200

400

Transaction Management

• tid = StartTransaction()
...

obj .op(. . .)tid
...

res = EndTransaction(tid) res : Commit, Abort

• If transaction may abort, operations must be undone

Pessimistic Solutions

• Global lock at transaction level

• Locking of individual objects, conflict locking, successive locking

• 2-phase locking: Lock until commit/abort decided, then unlock.

Optimistic Solutions

• Idea: Go ahead and validate transaction before commitment

• Many different techniques.

Serializability by Locking

A

B

T1

T2

300

500

IncrA(100) IncrB(−100)

IncrA(−200) ReadA(200) ReadB(400) Print(600)

+

200

400

Incr lock

Read lock

MySQL Transactions

Storage Engine MyISAM

• Efficient, but only supports explicit locking at table level

• Example: LOCK TABLE A READ, B WRITE, C WRITE

Use of tables A, B, and C

UNLOCK TABLES

Storage Engine InnoDB

• Supports transactions by row-level locking

• Example: START TRANSACTION

SELECT . . . FROM . . . WHERE . . .
...

UPDATE . . . SET . . .

COMMIT

• Optionally weaker isolation levels may be used

Software Transactional Memory (STM)

• Idea: To use transaction notions for in-memory program state

Principles

• Data must be stored in transaction-aware objects (”references”)

• All use must be coordinated by a transaction manager

• Mostly optimistic techniques are used

• Transactions may have syntactic support:
atomic {

. . .

}
• Conditional operations may be achieved by explicit retry

• Transactions might be composed, eg. T1 and T2, T1 orElse T2

• Composing conditional operations may implement selection

An STM Framework: Multiverse for JVM

• Uses optimistic multiversion concurrency control
• Classes may be transactionally instrumented by annotations

Example
• @TransactionalObject

public class Account {

private IntRef balance = newIntRef(0);

public int getBalance() { return balance; }

public void addToBalance(int amount) {
if (balance + amount < 0) throw new IllegalStateException();

balance = balance + amount;

}

@TransactionalMethod

public static void transfer (Account from, Account to, int amount) {
from.addToBalance(-amount);

to.addToBalance(amount);

}
}

Another STM Framework: Scala STM for JVM

• Shared data must be accessed via transactional references (Ref)
• Transactions use embedded transactional constructs

Example
• class ConcurrentIntList {

private class Node(val elem: Int, prev0: Node, next0: Node) {
val isHeader = prev0 == null

val prev = Ref(if (isHeader) this else prev0)

val next = Ref(if (isHeader) this else next0)

}

private val header = new Node(-1, null, null)

• def addLast(elem: Int) {
atomic { implicit txn =>

val p = header.prev()

val newNode = new Node(elem, p, header)

p.next() = newNode

header.prev() = newNode

}
}

Another STM Framework: Scala STM for JVM II

Example (cont’d)

• def addLast(e1: Int, e2: Int, elems: Int*) {
atomic { implicit txn =>

addLast(e1)

addLast(e2)

elems foreach addLast(_)

}
}

• def removeFirst(): Int = atomic { implicit txn =>

val n = header.next()

if (n == header)

retry

val nn = n.next()

header.() = nn

nn.prev() = header

n.elem

}

Distributed Transaction Management

• Objects handled by several distributed servers

• Roles:
I Client: Defines transaction extent and contents
I Coordinator: Controls the outcome of transaction
I Participants: Distributed objects being operated upon

• Client creates transaction and issues operations to participants

• Overall decision whether to commit or abort must be made

• Standard approach: Two-phase commit

Transaction Summary

• The transaction notion originates from data bases

• Can be used on any system with shared data

• Takes over the concurrency control via a transaction manager

• Transaction management has an overhead

• May be based on optimistic og pessimistic (locking) approach

