
Course 02158

Monitor Testing

Hans Henrik Løvengreen

DTU Compute

Testing Concurrent Programs

Cons

• Testing can show the presence of errors but never their absence

— E.W. Dijkstra

• Execution of concurrent programs is non-deterministic:

I Only a fraction of all execution paths can be covered
I Subtle errors, like race conditions, hard to ”hit”
I Errors found cannot be reproduced

Pros

• Beware of bugs in [my program]; I have only proved it correct, not tried it

— Donald Knuth

• Programs must be functionally validated anyhow

• Mundane bugs like typos, ±1, etc. likely to be found

• Process interaction is (or should be) concentrated in a few components



Testing Monitors

• [Brinch-Hansen 78] Reproducible Testing of Monitors

• Around 2010 applied to Java programs (Harvey, Hoffman, Long, Strooper)

Idea

• Monitors operations ∼ atomic chunks of sequential code

• Monitors may be structurally tested like other objects

Difficulties

• Monitor operations may block — calls for concurrent calls

• Ordering of operation calls is determined by scheduler

• Queue orderings may not be determined

• In Java, there is only a single condition queue

Monitor Test Method

1. Determine test conditions to cover all branches and iterations

2. Construct test sequences/scenarios that will cover all conditions

3. Implement test sequences in a test program

4. Determine a “sufficiently long” operation separation time

5. Run test program in a test environment and compare results



Example: Buffer Scenario

Producer Buffer Consumer

deposit(’a’)

fetch()

’a’

fetch()

deposit(’b’)

’b’

1.

2.

3.

4.

Test Sequence Implementation

• process Producer1

Timer .await(1);

Buf .deposit(’a’);

assert(Timer .time = 1);

Timer .await(4);

Buf .deposit(’b’);

assert(Timer .time = 4);

print("Producer 1 finished")

process Consumer1

var c : char ;

Timer .await(2);

c := Buf .fetch();

assert(c = ’a’ ∧ Timer .time = 2);

Timer .await(3);

c := Buf .fetch();

assert(c = ’b’ ∧ Timer .time = 4);

print("Consumer 1 finished")



Test Environment

• monitor Timer

var clock : int := 0;

check : condition;

procedure await(when : int)

while clock < when do wait(check);

function time() : int

return clock;

procedure tick()

clock := clock + 1;

signal all(check);

end

process ClockWork

loop
delay ”sufficient time”

Timer .tick();

end loop


