
02158 Concurrent Programming Fall 2024 Solutions Page 19

Solutions for Exercises, Week 6

1. Solution for Andrews Ex. 4.24

The idea is that a writer should “take all n coconuts” to make sure that no readers are
active. This has to be done through n single P-operations, but this could lead to deadlock
if started by more than one writer. Therefore, writers first have to get the right to start
this operation by entring a critical region protected by another semaphore mutexw .

var rw : semaphore := n;
mutexw : semaphore := 1;

process Reader [i : 1..n] =
. . .

P(rw);
read the database;
V(rw);
. . .

process Writer [j : 1..m] =
. . .

P(mutexw );
for k in 1..n do P(rw);
read the database;
for k in 1..n do V(rw);
V(mutexw );
. . .

This solution is fair towards both readers and writers if the semaphores are strongly fair
(e.g. FIFO).

2. Solution for Andrews Ex. 4.6

To implement the sleep/wakeup mechanism, we need a semaphore for mutual exclusion
and one for suspension. A counter keeps track of the number of waiting processes.

var S : semaphore := 1;
Q : semaphore := 0;
K : integer := 0;

sleep: P(S );
K := K + 1;
V(S )
P(Q);
K := K − 1;
if K > 0 then V(Q)

else V(S )

wakeup: P(S );
if K > 0 then V(Q)

else V(S )

Note that a solution in which sleep increments K and waits on Q and wakeup signals K

times does not work, since the signals may be taken by new processes arriving later. The
above solution using the baton technique ensures that new processes are not allowed to
interfere during the cascaded wakeup.



02158 Concurrent Programming Fall 2024 Solutions Page 20

3. Solution for Andrews Ex. 4.14

In order to achieve concurrent deposits and concurrent deposits, we may try to do only the
slot allocation under mutual exclusion. Then, however, the filling (and emptying) of the
slots can occur out of order, rendering the use of the front and rear pointers unfeasible.
We may choose to accept the loose ordering and protect each slot by private full/empty
semaphores.

A more conservative option, shown here, is to keep the ordering by passing a signal down
the slots indicating that the previous slot has been filled/emptied. This is done through
two arrays of semaphores prev full and prev empty :

var buf [0..n − 1] : T ;
front , rear : integer := 0;
full : semaphore := 0;
empty : semaphore := n;
prev full [0..n − 1] : semaphore := 0;
prev empty [0..n − 1] : semaphore := 0;
mutexP ,mutexC : semaphore := 1;

V(prev full [0]); V(pref empty [0]); — first slot OK

process Producer [i : 1..M ] =
var data : T ;

inpos : integer ;
repeat

data := produce;
P(empty);
P(mutexP );
inpos := rear ;
rear := (rear + 1) mod n;
V(mutexP );
buf [inpos] := data;
P(prev full [inpos]);
V(full);
V(prev full [(inpos + 1) mod n)]);

forever

process Consumer [j : 1..N ] =
var result : T ;

outpos : integer ;
repeat

P(full);
P(mutexC );
outpos := front ;
front := (front + 1) mod n;
V(mutexC );
result := buf [outpos];
P(prev empty [outpos]);
V(empty);
V(prev empty [(outpos + 1) mod n)]);
consume result ;

forever

This higher degree of concurrency may be beneficial if the data type T is a large datatype
such that buffer insertions/removals take significant time.



02158 Concurrent Programming Fall 2024 Solutions Page 21

4. Solution for Sema.3

(a) The solution to the meeting problem (see [Basic]) does not work for binary semaphores
since the following execution is possible:

Process A signals SB .

Process B signals SA.

Process A passes P(SA), executes OPA and signals SB .

Now, two signallings on SB have been performed without an intermediate wait. The precise
effect of this depends on the particular kind of binary semaphore and should generally be
avoided.

(b) A solution with binary semaphores is obtained by (getting the idea of) interchanging P

and V in one of the processes:

SYNCA: V(SB );
P(SA);

SYNCB : P(SB );
V(SA);

That this solution still ensures that the two operations do not deviate from each other is
proven by using the semaphore invariants as before. Furthermore, we may show that the
values of the semaphores can never exceed 1. From the program, we obtain the following
inequalities:

#P(SA) ≤ #V(SB) ≤ #P(SA) + 1
#V(SA) ≤ #P(SB) ≤ #V(SA) + 1

Since SB is initialized to 0 we have the semaphore invariant #P(SB ) ≤ #V(SB ). Together
with the above we get:

#V(SA) ≤ #P(SB ) ≤ #V(SB ) ≤ #P(SA) + 1

Subtracting #P(SA) from both sides we get:

#V(SA)−#P(SA) ≤ 1

or, as the left hand side is precisely the semaphore value sa ,

sa ≤ 1

That is, using general semaphores the value of SA can never exceed 1. Thus, SA may as
well be implemented by a binary semaphore. Correspondingly we can show that sb ≤ 1.



02158 Concurrent Programming Fall 2024 Solutions Page 22

3. Solution for Concurrent Systems Exam December 2003, Problem 2

Question 2.1

The statements b, d , e, and f can be considered to be atomic since they only have only
one critical reference each. Both a and c have two critical references.

Question 2.2

(a)

✍✌
✎☞
l0

✍✌
✎☞
l1

✍✌
✎☞
l2

❄

❄

a1: t := y

❄

a2: x := t + 1

P1:

✍✌
✎☞
k0

✍✌
✎☞
k1

✍✌
✎☞
k2

❄

❄

b1: y := x + 2

❄

b2: x := 2

P2:

[Location and action labels not required.]

(b) Going through the 6 possible interleavings, the possible results for (x , y) are found to be:

(2, 3), (2, 2), (3, 2), (1, 2)

Question 2.3

P is preserved by a2 and a3. [By a2 since y < 0 and P imply x > 0 and hence y also
becomes positive.]

Q is preserved by all three actions. [Also by a2 since it cannot be executed when Q holds.]

R is preserved only by a2.

Question 2.4

(a) The sequence (0, 1)(1, 2) repeated forever will satisfy all parts of F .

(b) Assuming F , only the guard of a3 is constantly true and hence only a3 is guaranteed to
be eventually executed under weak fairness. [If x 6= 0 it must be positive due to ✷x ≥ 0
and hence y > x > 0 imply y > 1.]

(c) Assuming F , the guards of a1, a2, and a3 will be infinitely often true, and hence they will
be eventually executed under strong fairness. [The guard of a4 is not necessarily true, for
instance, it is never true in the state sequence proposed in (a).]



02158 Concurrent Programming Fall 2024 Solutions Page 23

4. Solution for Concurrent Systems Exam December 2006, Problem 2

Question 2.1

A1 A2

B1 B2C

Question 2.2

Corresponding to the Petri-net, we introduce a semaphore DoneA that counts the number
of A-operations executed. C may then be executed after n P-operations on DoneA. Q

controls the final synchronization by awaiting a signal from each finished B -operation on
a semaphore DoneB and then signalling each process Pi on a private semaphore GoA[i ]:

var DoneA : semaphore; // Counts no. of A’s done
DoneB : semaphore; // Counts no. of B ’s done
GoA[1..n] : semaphore; // OK to start Ai again.

All semaphores are initialized to 0

process P [i : 1..n];
repeat

Ai ;
V(DoneA);
Bi ;
V(DoneB);
P(GoA[i ])

forever

process Q ;
repeat

for j in 1..n do P(DoneA);
C ;
for j in 1..n do P(DoneB);
for j in 1..n do V(GoA[j ])

forever

[It is not possible to replace GoA[1..n] with a common semaphore since a P process
may wait again immediately after a wait and thereby could consume a token destined for
another process.]



02158 Concurrent Programming Fall 2024 Solutions Page 24

Question 2.3

monitor Sync

var adone : integer := 0; // No. of A’s done
done : integer := 0; // No. of B ’s and C done
OkC : condition; // Wait for all A’s done
Alldone : condition; // Wait for all B ’s and C done

procedure EndA()
adone := adone + 1;
if adone = n then signal(OkC )

procedure StartC ()
while adone < n do wait(OkC );
adone := 0

procedure Done()
done := done + 1;
if done < n + 1 then wait(Alldone)

else done := 0;
signal all(Alldone)

end

process P [i : 1..n];
repeat

Ai ;
Sync.EndA();
Bi ;
Sync.Done()

forever

process Q ;
repeat

Sync.StartC ();
C ;
Sync.Done()

forever

[Solution assumes no spurious wake-ups.]


