
02158 Concurrent Programming Fall 2024 Solutions Page 6

Solutions for Exercises, Week 3

1. Solution for Trans.3

(1) a1 b1 b2 c1
(2) a1 b1 c1 b2
(3) a1 c1 b1 b2
(4) b1 a1 b2 c1
(5) b1 a1 c1 b2
(6) b1 c1 a1 b2

(7) b1 c1 b2 a1
(8) b1 b2 a1 c1
(9) b1 b2 c1 a1
(10) c1 a1 b1 b2
(11) c1 b1 a1 b2
(12) c1 b1 b2 a1

2. Solution for Trans.4

Number of interleavings:
(n1 + n2 + ...+ nk )!

n1! ∗ n2! ∗ ... ∗ nk !

This forumula can be obtained by first selecting places for P1, then for P2 from the re-
maining slots etc. and then multiply these possibilities together. The formula then follows
by reduction.

Another, more direct, way to get the formula is to generalize the second argument from
the solution for Trans.2.

3. Solution for Andrews Ex. 2.11

(a) The expression evaluation must be divided into three atomic reading steps. Now, each
variable may or may not have been changed when read. Since all changes incidentally
increment each variable by 3, zero to three increments may be seen. Thus, the possible
final values are {3, 6, 9, 12}.

(b) Since the variables are updated by independent processes, each variable still may or may
not have been changed when read irrespective of the ordering of the readings. Thus, the
possible results are again: {3, 6, 9, 12}

4. Solution for Andrews Ex. 2.14

(a) No, the statement of the last process, x := x −y , has three critical references, since both x

and y are read and written by other processes. The statement 〈 x := x+y 〉 is by definition
atomic and thus not subject to the rule.

(b) Rewriting the last process to atomic statements 〈 t := x 〉; 〈 t := t − y 〉; 〈 x := t 〉, the
three processes are represented by the transition diagrams:



02158 Concurrent Programming Fall 2024 Solutions Page 7

❡

❡

❄

❄

x := x + y

❡

❡

❄

❄

y := 0

❡

❡

❡

❡

❄

❄

t := x

❄

t := t − y

❄

x := t

These give rise to 20 interleavings. Of course, all of these lead to y = 0. Analyzing the
interleavings, we find that x may get the values {0, 1, 2}.

5. Solution for Share.1

The problem is to get two processes to make a true synchronization, i.e. the processes
should “meet” inbetween they perform their operation.

Proposal 1

An obvious way to ensure the invariant is to use directly the variables that appear in the
invariant, i.e. the number of times OPA respectively OPB have been executed. This results
in the following program:

var a, b : integer ;

a := 0; b := 0;

process A =
repeat

while a > b do ;
. . .

OPA;
a := a + 1;

forever

process B =
repeat

while b > a do ;
. . .

OPB ;
b := b + 1;

forever

Notice that both tests and assignments are atomic according the the rule of critical ref-
erences. Note also that the test cannot be changed to a 6= b since deadlock may then
occur (how?). Furthermore, it is important that both a and b are incremented after the
execution of the respective operation.

This solution, however, has the drawback that it increments a and b indefinitely. An
attempt to count modulo somthing is very difficult to do correctly. Another problem is
that the synchronization code is spread over the process. This is readily solved by moving
the increments up before the while-loops.

Proposal 2

An attempt to synchronize using flags could be to use a flag for each process according to
the following strategy: When a process arrives at the “meeting place”, it raises its flag and



02158 Concurrent Programming Fall 2024 Solutions Page 8

waits for the flag of the other process to come up. When this is the case, it lowers its own
flag and continues:

var flagA,flagB : boolean;

Initialization: flagA := false; flagB := false;

SYNCA:
flagA := true;
while ¬flagB do ;
flagA := false;

SYNCB :
flagB := true;
while ¬flagA do ;
flagB := false;

This solution is not correct! If a process is suspended after having raised its flag, the other
process may run without blocking.

The solution cannot be patched by having the processes wait for the other process to take
its flag down, before lowering its own, since this solution is subject to deadlock.

A correct solutionis obtained by having the processes take down the flag of the other one
and then wait for their own flag to be lowered. It is, however, sufficient with only “half”
of this solution. See proposal 4, below.

Proposal 3

One may try to use a variable to alternate the execution of the two processes:

var turn : (A,B);

Initialization: turn := A; – Arbitrary

SYNCA:
turn := B ;
while turn = B do ;

SYNCB :
turn := A;
while turn = A do ;

This solution satisfies the invariant as no operation will get ahead of the other, but it will
not utilize the concurrrency of the problem. A concurrent solution is presented below:

Proposal 4

Here we make an assymmetric solution with only one flag. The flag is used as follows:
When a certain of the processes (say PA) arrives at the meeting place, it raises the flag
and waits for it to be lowered. The other process will start by waiting for the flag to be
raised and will then lower it. In this way it is ascertained that both process will wait for
the other one to arrive at the meeting place.

var flag : boolean;

Initialization: flag := false ;

SYNCA:
flag := true;
while flag do ;

SYNCB :
while ¬flag do ;
flag := false;

In this solution there is no risk of overflow and the synchronization code has been gathered
in the beginning of the processes.


