
02158 Concurrent Programming Fall 2024 Solutions Page 25

Solutions for Exercise Class 3

1. Solution for Mon.1

monitor Meet

var OK : boolean := false; — Has the the other arrived?
c : condition; — First one waits here

procedure SYNCA()
if OK then {OK := false; signal(c)}

else {OK := true; wait(c)}

procedure SYNCB() — As SYNCA, but coded alternatively
OK := ¬OK ;
if ¬OK then signal(c) else wait(c);

end

If we utilize the possibility of asking whether a condition queue is empty or not, we may
eliminate the variable OK and both operations become:

procedure SYNCA/B()

if empty(c) then wait(c) else signal(c)

There are a number of other (more complex) solution where different queues are used,
where each process has a flag etc.

2. See solution to point 6. below.

3. Both are used for letting a process wait until woken up, but they are indeed different:

• Semaphores may be used anywhere. Condition queues are associated with monitors
and may only be used within these.

• The wait operation on a condition queue atomically realeases the monitor while
putting the calling process on the queue.

If a P-operation on a semaphore is made within a monitor operation, the process will
just wait on the semaphore while the monitor’s critical region remains locked.

• If there are no waiting processes, a V operation on a semaphore is remembered by
incrementing the semaphore value, while signalling an empty condition queue has no
effect.



02158 Concurrent Programming Fall 2024 Solutions Page 26

4. Assuming that the variable b is protected by the monitor’s critical region, this will lead to
a deadlock since the critical region is not released during calls of sleep().

5. Based on the second solution idea in point 1. above, adding two monitor variables, first
and sum, the problem may be solved by the following:

monitor MeetAndSum

var first , sum : integer := 0;
c : condition; — First one waits here

function SYNCA/B(x : integer)

if empty(c) then {first := x ; wait(c)}
else {sum := first + x ; signal(c)};

return sum

end

Notice, that since the last process at the meeting may immediately call SYNC again before
the first of the processes has returned, the sum must be held in a separate variable, sum.
This variabale will not be overwritten, because the monitor is assumed to be used by two
dedicated processes only.

[Since conditions are not rechecked after the wait, this solutions would not work if spurious
wakeups could occur. But according to the standard definition (in [Andrews]) they do not.]

6. Solution for Mon.4

(a) monitor Event

var c : condition;

procedure sleep()
wait(c)

procedure wakeup()
signal all(c)

end

[Note that since no conditions are checked after the wait, this solution would not work if
spurious wake-ups could occur.]



02158 Concurrent Programming Fall 2024 Solutions Page 27

(b) To prevent spurious wakeups to let threads pass sleep() when no wakeup() is called, the
current state of the synchronization mechanism must be registered in the monitor. First
we try to use a flag go in combination with a count of the number of waiting threads:

monitor Event

var c : condition;
count : integer := 0;
go : boolean := false;

procedure sleep()
count := count + 1;
while ¬go do wait(c);
count := count − 1;
if count = 0 then go := false;

procedure wakeup()
if count > 0 then

go := true;
signal all(c)

end

This solution is robust towards spurious wakeups, but is not quite faithful to the specifi-
cation, since calls of sleep() made before all waiting threads have left the monitor are
allowed to pass in the same round. Depending on the actual use, this may be acceptable.

It turns out to be very difficult to control exactly which threads are woken up explicity
and which accidentally by spurious wakeups.

However, a simple and precise solution is obtained by using the idea of the ticket algorithm
where processes keep track of their position themselves.

monitor Event

var c : condition;
round : integer := 0;

procedure sleep()
myround : integer := round ;
while myround = round do wait(c);

procedure wakeup()
round := round + 1;
signal all(c)

end

For this we need an indefinite integer to count the current round. In practice though, a
64-bit long will suffice.

Also here, we could count the waiting threads and only increment round when there are
threads actually waiting.


