
02158 Concurrent Programming Fall 2024 Solutions Page 1

Solutions for Exercise Class 1

1. Solution for Petri.2

(a) The simplest Petri Net becomes:

✍✌✎☞

✍✌✎☞

✍✌✎☞

✍✌✎☞

✍✌✎☞

A

B C

D

❄
❄

��✠ ❅❅❘
❅❅❘ ��✠ ✆

✻

☎✛

❄

❄✝
✻

✞ ✲s s

It is seen that it is necessary to introduce an anonymous transition that ensures that the
two sequential processes are synchronized in each round. (This synchronization may also
be expressed in other, less obvious, ways.)

(b) From the above net it is seen that (A,D), (B ,D), (C ,D) can be executed concurrently.
(Since there exists behaviours of the net in which the corresponding transitions may fire
simultanuously.)

(c) For the first round, we get the following six possible interleavings:

A,B ,D
A,D ,B
D ,A,B

A,C ,D
A,D ,C
D ,A,C

2. A place with a single token is added, and a loop from/to this place is added to each of the
transitions A, B , C , and D .

3. Solution for Petri.1

The jetties A and C are represented by places marked with the current number of boats.
The jetty B is represented by two places, since boats are to continue towards A or C . All
jetties have a place modelling the capacity of the jetty. Inbetween the jetties, there are
places representing boats on their way on the sea. Here, the five boats have been placed
arbitrarily at the jetties:

A C

BC

BA



02158 Concurrent Programming Fall 2024 Solutions Page 2

4. Advantages of formal models are clearly that they are precise and unambigious. Further-
more, graphical models like Petri Nets may even be very intuitive. A disadvantage is that
formal models requires the reader to know the modelling language well. Futhermore, the
relationship with the real-world phenomenon being modelled may be less obvious.

5. A fork over a place-node reflects a choice. A fork over a transition-node reflects process
creation.

6.

t3 t1 t2
p3

p1

p2

Possible firings: M0
{t1}−−→ (1, 1, 1), M0

{t2}−−→ (1, 1, 1), M0
{t1,t2}−−−→ (0, 2, 1), M0

{t1,t1}−−−→ (0, 2, 1)

Note that t1 may fire together with itself, but t2 may not!



02158 Concurrent Programming Fall 2024 Solutions Page 3

Solutions for Exercises, Week 1

1. Solution for Petri.3

The recipe can be modelled to various detail. Here is a proposal which reflects most of the
desription:

Rinse and
chop leeks

Peel and cut
root vegetables

Season and
divide

Add maizena

10

Fry Pans

Mix with egg yolk

Remarks: Whether to add maizena or not is represented by a choice with a void branch.
The the crossed arc with a 10 represents 10 arrows corresponding to the division into
portions. According to the way we define simultaneous firings of a transition with itself,
the last part allows for frying two pancakes at a time.

2. Solution for Petri.5

Figure 1.1 in [Basic] is represented by Petri Net N = (P ,T ,F ) where

P = {p1, p2, p3, p4, p5}
T = {t1, t2, t3, t4, t5}
F = {(p1, t1), (p1, t3), (p2, t3), (p3, t2), (p4, t5), (p5, t4)

(t1, p3), (t2, p1), (t3, p4), (t4, p2), (t5, p3), (t5, p5)}

[In order to represent multiple arrows between a place/transition pair, the relation F is
understood to be a multiset (ie. a set in which each element may occur more than once).]



02158 Concurrent Programming Fall 2024 Solutions Page 4

Solutions for Exercises, Week 2

1. Solution for Trans.1

(1) a1 a2 a3 b1 b2
(2) a1 a2 b1 a3 b2
(3) a1 a2 b1 b2 a3
(4) a1 b1 a2 a3 b2
(5) a1 b1 a2 b2 a3
(6) a1 b1 b2 a2 a3
(7) b1 a1 a2 a3 b2
(8) b1 a1 a2 b2 a3
(9) b1 a1 b2 a2 a3

(10) b1 b2 a1 a2 a3

2. Solution for Trans.2

The number of interleavings is given by:

(
n1 + n2

n1

)
=

(
n1 + n2

n2

)
=

(n1 + n2)!

n1! ∗ n2!

An argument:

Each interleaving must contain n1 actions from P1 and n2 actions from P2, ie.
in total n1 + n2 actions. We may say that each interleaving has n1 + n2 places
and an interleaving is the uniquely given by selecting n1 of these for the actions
of P1 (the actions are supposed to come in the given order). As known from
combinatorics, the number of ways n1 elements can be selected out of n1 + n2
elements is given by the above expression.

An other argument:

For any interleaving, the actions from P1 can be permuted in n1! ways and
the actions from P2 in n2! ways. From any interleaving, we may thus generate
n1! ∗ n2! permuations of the total of (n1 + n2)! permutations of all actions of P1

and P2. From this, the expression follows.

2. Solution for Trans.5

Rewriting to atomic assignment statements:

x := 1; y := 2;
co

〈 t1 := y + 1 〉; 〈 x := t1 〉 ‖ 〈 t2 := x − 1 〉; 〈 y := t2 〉
oc

Or equivalently as transition diagrams:



02158 Concurrent Programming Fall 2024 Solutions Page 5

✍✌✎☞
l0

✍✌✎☞
l1

✍✌✎☞
l2

❄

❄
a1: t1 := y + 1

❄
a2: x := t1

P1:

✍✌✎☞
k0

✍✌✎☞
k1

✍✌✎☞
k2

❄

❄
b1: t2 := x − 1

❄
b2: y := t2

P2:

Let the global state be given by a vector (x , y , t1, t2, π1, π2) where πi is the control pointer
for process Pi . Assuming arbitrarily t1 and t2 to be initially 0, the transition system for
the concurrent systems is given by the transition graph:

(1, 2, 0, 0, l0 , k0)

(1, 2, 3, 0, l1 , k0)

(1, 2, 0, 0, l0 , k1)

(1, 2, 3, 0, l1 , k1)

(3, 2, 3, 0, l2 , k1)

(1, 0, 3, 0, l1 , k2)

(3, 0, 3, 0, l2 , k2)

(1, 0, 0, 0, l0 , k2)

(1, 0, 1, 0, l1 , k2)

(1, 0, 1, 0, l2 , k2)

(3, 2, 3, 0, l2 , k0) (3, 2, 3, 2, l2 , k1) (3, 2, 3, 2, l2 , k2)

❄
a1

❄

a2

✲
b1

❄
a1

✲
b1

❄
a2

✲
b2

✲
b2

❄
a2

✲
b2

❄
a1

❄
a2

✲
b1 ✲

b2

By inspection of the final states (π1 = l2 ∧ π2 = k2) we find the possibilities for (x , y):

{(1, 0), (3, 0), (3, 2)}

3. Solution for Trans.6

Transition diagrams of the processes in Andrews Fig. 2.2:

❝
❝
❝
❝

❝Producer

❄

❄
p < n →

❄
p = c →

❄
buf := a[p]

p := p + 1✆✝

✞ ✲ ✲
p ≥ n → ❝

❝
❝
❝

❝Consumer

❄

❄
c < n →

❄
p > c →

❄
b[c] := buf

c := c + 1✆✝

✞ ✲ ✲
c ≥ n →



02158 Concurrent Programming Fall 2024 Solutions Page 6

Solutions for Exercises, Week 3

1. Solution for Trans.3

(1) a1 b1 b2 c1
(2) a1 b1 c1 b2
(3) a1 c1 b1 b2
(4) b1 a1 b2 c1
(5) b1 a1 c1 b2
(6) b1 c1 a1 b2

(7) b1 c1 b2 a1
(8) b1 b2 a1 c1
(9) b1 b2 c1 a1
(10) c1 a1 b1 b2
(11) c1 b1 a1 b2
(12) c1 b1 b2 a1

2. Solution for Trans.4

Number of interleavings:
(n1 + n2 + ...+ nk )!

n1! ∗ n2! ∗ ... ∗ nk !
This forumula can be obtained by first selecting places for P1, then for P2 from the re-
maining slots etc. and then multiply these possibilities together. The formula then follows
by reduction.

Another, more direct, way to get the formula is to generalize the second argument from
the solution for Trans.2.

3. Solution for Andrews Ex. 2.11

(a) The expression evaluation must be divided into three atomic reading steps. Now, each
variable may or may not have been changed when read. Since all changes incidentally
increment each variable by 3, zero to three increments may be seen. Thus, the possible
final values are {3, 6, 9, 12}.

(b) Since the variables are updated by independent processes, each variable still may or may
not have been changed when read irrespective of the ordering of the readings. Thus, the
possible results are again: {3, 6, 9, 12}

4. Solution for Andrews Ex. 2.14

(a) No, the statement of the last process, x := x −y , has three critical references, since both x
and y are read and written by other processes. The statement 〈 x := x+y 〉 is by definition
atomic and thus not subject to the rule.

(b) Rewriting the last process to atomic statements 〈 t := x 〉; 〈 t := t − y 〉; 〈 x := t 〉, the
three processes are represented by the transition diagrams:



02158 Concurrent Programming Fall 2024 Solutions Page 7

❡
❡
❄

❄
x := x + y

❡
❡
❄

❄
y := 0

❡
❡
❡
❡

❄

❄
t := x

❄
t := t − y

❄
x := t

These give rise to 20 interleavings. Of course, all of these lead to y = 0. Analyzing the
interleavings, we find that x may get the values {0, 1, 2}.

5. Solution for Share.1

The problem is to get two processes to make a true synchronization, i.e. the processes
should “meet” inbetween they perform their operation.

Proposal 1

An obvious way to ensure the invariant is to use directly the variables that appear in the
invariant, i.e. the number of times OPA respectively OPB have been executed. This results
in the following program:

var a, b : integer ;

a := 0; b := 0;

process A =
repeat

while a > b do ;
. . .
OPA;
a := a + 1;

forever

process B =
repeat

while b > a do ;
. . .
OPB ;
b := b + 1;

forever

Notice that both tests and assignments are atomic according the the rule of critical ref-
erences. Note also that the test cannot be changed to a 6= b since deadlock may then
occur (how?). Furthermore, it is important that both a and b are incremented after the
execution of the respective operation.

This solution, however, has the drawback that it increments a and b indefinitely. An
attempt to count modulo somthing is very difficult to do correctly. Another problem is
that the synchronization code is spread over the process. This is readily solved by moving
the increments up before the while-loops.

Proposal 2

An attempt to synchronize using flags could be to use a flag for each process according to
the following strategy: When a process arrives at the “meeting place”, it raises its flag and



02158 Concurrent Programming Fall 2024 Solutions Page 8

waits for the flag of the other process to come up. When this is the case, it lowers its own
flag and continues:

var flagA,flagB : boolean;

Initialization: flagA := false; flagB := false;

SYNCA:
flagA := true;
while ¬flagB do ;
flagA := false;

SYNCB :
flagB := true;
while ¬flagA do ;
flagB := false;

This solution is not correct! If a process is suspended after having raised its flag, the other
process may run without blocking.

The solution cannot be patched by having the processes wait for the other process to take
its flag down, before lowering its own, since this solution is subject to deadlock.

A correct solutionis obtained by having the processes take down the flag of the other one
and then wait for their own flag to be lowered. It is, however, sufficient with only “half”
of this solution. See proposal 4, below.

Proposal 3

One may try to use a variable to alternate the execution of the two processes:

var turn : (A,B);

Initialization: turn := A; – Arbitrary

SYNCA:
turn := B ;
while turn = B do ;

SYNCB :
turn := A;
while turn = A do ;

This solution satisfies the invariant as no operation will get ahead of the other, but it will
not utilize the concurrrency of the problem. A concurrent solution is presented below:

Proposal 4

Here we make an assymmetric solution with only one flag. The flag is used as follows:
When a certain of the processes (say PA) arrives at the meeting place, it raises the flag
and waits for it to be lowered. The other process will start by waiting for the flag to be
raised and will then lower it. In this way it is ascertained that both process will wait for
the other one to arrive at the meeting place.

var flag : boolean;

Initialization: flag := false ;

SYNCA:
flag := true;
while flag do ;

SYNCB :
while ¬flag do ;
flag := false;

In this solution there is no risk of overflow and the synchronization code has been gathered
in the beginning of the processes.



02158 Concurrent Programming Fall 2024 Solutions Page 9

Solutions for Exercise Clas 2

1. The final value of x may range from 2 (!) to 10.

Assuming the two processes to be called P1 and P2, this is how it can get as low as 2:

x

Initially: 0

P1 reads 0 from x . 0
P2 increments x four times. 4
P1 writes 1. 1
P2 reads 1 from x . 1
P1 increments x four times. 5
P2 writes 2. 2

It can be shown (using invariants — not imagination!) that this is the smallest result.

2. First question: NO. x := x + 2 and x := x + 1 can be executed in any sequential order,
but are not atomic.

Second question: NO. x := 1 and x := 2 are each atomic, but the order is important.

3. The the number of critical references within statements a to f are 2, 1, 1, 2, 1, and 2
respectively. Hence only statements b, c, and e can be considered atomic.

4. If a variable spans more than one memory word, it has to be accessed using several bus
cycles. If these words are accessed by other processors or devices, intermediate memory
states may be seen. Even if used only by a single processor, the access to a larger memory
area (e.g. a record/structure) is likely to be divided into interruptable steps.

5. Usually the least addressable unit of memory is a byte. Thus to change a boolean variable
represented as a bit of a byte, it is necessary to read the whole byte into a register, change
the bit by masking and finally store the byte againg. This will not be atomic.

6. Solution for Share.2

(a) First we note that the statement C1 := ¬C2 cannot be considered atomic since C1 is a
shared variable and C2 is a variable read by the other process. Rewriting to atomic actions
we the following entry protocol for P1:

repeat
< t1 := ¬C2 >;
<C1 := t1 >;

until <¬C2 >;

Correspondingly for process P2. Transition diagrams:



02158 Concurrent Programming Fall 2024 Solutions Page 10

❝
❝
❝
❝
❝
❝

P1

❄

❄
non critical1

❄
t1 := ¬C2

❄
C1 := t1

❄
¬C2 → C2 →

❄
critical1

C1 := false✆✝

✞ ✲

✆

☎✛

❝
❝
❝
❝
❝
❝

P2

❄

❄
non critical2

❄
t2 := ¬C1

❄
C2 := t2

❄
¬C1 → C1 →

❄
critical2

C2 := false✆✝

✞ ✲

✆

☎✛

(b) The algorithm does not ensure mutual exclusion. We now see that with the initializations
given, an execution in which the atomic actions of the two processes alternate will first set
both C -s to true and in the next repetition, both variables false after which both processes
will enter their critical section!

(c) Since the idea of the algorithm is to set ones flag to the opposite of the flag of the other
process, it is tempting to believe that the algoritm will work, if the statements C1 := ¬C2

and C2 := ¬C1 are executed atomically. But even assuming these to be atomic, the
following execution is possible:

C1 C2

Initially: false false

P2 executes nc2, its entry-protocol and enters cs2. false true
P1 executes nc1 and (atomically) sets C1 := ¬C2. false true
P2 leaves cs2 and executes C2 := false. false false
P1 tests C2 and enters cs1. false false
P2 executes nc2, enters its entry-protocol, sets C2 to true,
finds C1 to be false and enters cs2.

false true

Both processes are now in their critical sections!

The trouble is that the value of C2 that is tested is not the same as the one that C1 is set
relative to (and vice versa).

[If the until-test in P1 is changed to C1 and correspondingly in P2 to C2, the algorithm
ensures mutual exclusion given atomic assignments.

To actually prove this we need the following auxiliary invariants:

Gi
∆
= in csi ⇒ Ci i = 1, 2

I
∆
= ¬(C1 ∧ C2)



02158 Concurrent Programming Fall 2024 Solutions Page 11

Now assume that both processes are in their critical sections

in cs1 ∧ in cs2

According to Gi this would mean that both C variables were true. This, however, would
be in contradiction with I . Thus, if Gi and I are invariants, mutual exclusion is ensured.

We are now going to show the auxliary invariants. G1 andG2 are seen to be local invariants.

I is shown by an inductive argument:

• Initially I holds since both C1 and C2 are false.

• Since e1 obviously preserves I , the only potentially dangerous action in P2 is a1:

a1: This actions will preserve I , as C1 is set to the negation of C2 and hence one of
them will be false after the action.

• By symmetry, all actions in P2 will also preserve I .

Thus I is an invariant of the program.]

7. In this course, we define a critical region to comprise a set of critical sections which
are pieces of code among which there must be mutual exclusion. In the literature, this
distinction is not always made.

8. Yes. The only constraint is that there cannot be two processes active within the same
region at the same time.

9. Yes. For instance there may be a region protecting the use of a printer and a region
protecting some shared variables. Critical regions may even overlap.

10. (a) ✷¬Snows(Bermuda)

(b) ✷(Snows(Helsinki) ⇒ Snows(Finland))

(c) ✷(Snows(Norway) ⇒ ✸Snows(Sweden))

(d) ✷✸Snows(DK ) ∧ ✷✸Snows(NZ ) ∧ ✷¬(Snows(DK ) ∧ Snows(NZ ))

(e) ✷(Snows(Sahara) ⇒ ✷Snows(Sahara))

(f) ✷∃x : Snows(x )



02158 Concurrent Programming Fall 2024 Solutions Page 12

Solutions for CP Exercises, Week 4

1. Solution for Andrews Ex. 3.3

(a) var l : integer := 1;

process P [i : 1..n] =
var r : integer := 0;
repeat

nc1: non-critical sectioni ;
repeat

Swap(r , l);
until r = 1;

cs1: critical sectioni ;
Swap(r , l);

forever;

We are now going to prove that the above solution does ensure mutual exclusion.

First, we assume that the local variables r are renamed to global variables ri (i = 1..n)
that are all initialized to 0;

Next, we prove some auxiliary invariants:

Fi
∆
= in csi ⇒ ri = 1 i = 1..n

G
∆
= l ∈ 0, 1

Hi
∆
= ri ∈ 0, 1 i = 1..n

Since ri is changed only in Pi , Fi is a local invariant By induction, Hi and G are easily
seen to be invariants since 0 and 1 are the only values being swapped around.

Now we define
I

∆
= r1 + r2 + . . .+ rn + l = 1

This holds intially and since any of the variables are changed only by atomic swapping of
two of them, their sum will remain constant. Therefore, I is an invariant of the program.

Now, if two of the processes Pi and Pj (j 6= i) should be in their critical sections at the
same time, Fi and together with G and Hi would give us

r1 + r2 + . . .+ rn + l ≥ 2

contradicting the invariant I . Thus, we conclude that this cannot be the case, ie. the
algorithm ensures mutual exclusion.

If two or more processes execute Swap(ri , l) at the same time, one of the will get the
“token” first and thereby obtain access to the region. Which of them it is not determined.
Thus, the algorithm cannot deadlock nor livlock, but it is not fair. Starvation can occur if
other process manages to enter the region inbetween a given process attempts to execute
Swap(ri , l).

(b) To avoid memory contention by writing to l , its value may be checked before an attempt
is made to change it with Swap:



02158 Concurrent Programming Fall 2024 Solutions Page 13

repeat
while l = 0 do skip;
Swap(r , l);

until r = 1;

This will not effect the proof in (a).

(c) Not included

2. Solution for Andrews Ex. 3.2

var l : integer := 1;

process P [i : 1..n] =
var s : integer ;
repeat

non-critical sectioni ;
DEC (l , s);
while s > 0 do {

INC (l , s);
delay;
DEC (l , s);

}
critical sectioni ;
INC (l , s);

forever;

Here, the lock l is used as in the test-and-set solution. However, if the lock is already “set”
(l < 1), the effect of DEC must be undone by INC , before trying again. The correctness
argument (or proof) follows the same line as for the test-and-set solution.



02158 Concurrent Programming Fall 2024 Solutions Page 14

Solutions for Exercises, Week 5

1. Solution for Theory.1

Question 1.1

(a) I holds initially since x = 0 ∧ y = 0.

All three a-actions are potenially dangerous for I :

a1: Assuming I to hold before the actions, the precondition ensures that 0 < y ≤ 2 after
the actions. Further x = y and therefore I holds after execution of a1.

a2: The precondition x = 0 and the effect ensures x = 0 ∧ y = 0 after the actions. Thus,
I holds.

a3: If I holds before the actions, we must have 0 = x ≤ y ≤ 2 after the actions, thus I
still holds.

Since I holds initially and is preserved by all atomic actions, I is an invariant of the
program.

(b) Transition graph:

(0, 0)

(0, 1)

(0, 2)

(1, 1)

(2, 2)

�
�
�✒
a1

�
�
�✒
a1

✟✟✟✟✟✟✯a1

❄
a2

✛
a3

✛
a3

✟✟

a2

❍❍❥

Further there are a3 self-loops on states (0, 0), (0, 1), and (0, 2) plus an a2 self-loop on
state (0, 0). Since these are relevant only for liveness properties and only under less than
weak fairness assumptions, they are not shown.

(c) From the transition graph, showing the complete reachable state space, we see by inpection
that (x , y) = (1, 2) is not reachable and thus ¬(x = 1 ∧ y = 2) is an invariant of the
program.

Question 1.2

[Assuming at least weak fairness, the self-loops on the transition graph are irrelevant.]

(a) Given a transition graph, weak fairness ensures that the execution cannot remain forever
in a state which can be left by one or more actions. For the transition graph we therefore
conclude that any execution must pass through (x , y) = (1, 1) over and over again. Thus,
✷✸x = 1 is satisfied.

(b) Consider the infinite execution

(0, 0)
a1−→ (1, 1)

a3−→ (0, 1)
a2−→ (0, 0)

a1−→ (1, 1)
a3−→ · · ·



02158 Concurrent Programming Fall 2024 Solutions Page 15

In this execution, all actions are executed infinitely often, thus strong fairness is satisfied.
However, no state with x = 2 is met.

Note: The notion of fairness is related to actions. If a particular action is taken in any
state, fairness is satisfied for that action.

Question 1.3

(a) If a2 cannot be considered atomic as a whole, by the default assumption of atomic reads
and writes, it will correspond to

b2: 〈await x = 0 〉; c2: 〈 y := 0 〉

This can be depicted by the transition diagram:

❡
❡
❡
❄
b2: x = 0 →

❄
c2: y := 0

Now, the interleaving

(0, 0)
b2−→ (0, 0)

a1−→ (1, 1)
c2−→ (1, 0)

violates I .

(b) H can be defined as:

H
∆
= I ∧ (at c1 ⇒ y < 2) ∧ (at d1 ⇒ x ≤ t < 2)

which is readily seen to hold initially and imply I . Further, H is preserved by all atomic
actions. Especially, the conjunct (at d1 ⇒ x ≤ t < 2) is needed to conclude I after d1.



02158 Concurrent Programming Fall 2024 Solutions Page 16

2. Solution for Sema.1

Direct “translation” of the program to a Petri Net:

P1: P2: P3:

SC

SA

A

C

B

SB

Two Petri Nets that both directly expresses how A, B , and C are synchronized:

✍✌✎☞ ✍✌✎☞

✍✌✎☞ ✍✌✎☞
A BC❄

❄

❄

❄✆
✻

✝
✻

☎✛ ✞ ✲s s ✍✌✎☞ ✍✌✎☞

✍✌✎☞
A BC❄

✝ ✲

❄

✆✛

✻✻

☎✛ ✞ ✲s s

3. Solution for Sema.2

We here chose PD to be the “master” that starts up PA which in turn signals PB or PC :

var SA,SBC ,SD : semaphore := 0;

process PA;
repeat
P(SA);
A;
V(SBC )

forever;

process PB ;
repeat
P(SBC );
B ;
V(SD)

forever;

process PC ;
repeat
P(SBC );
C ;
V(SD)

forever;

process PD ;
repeat
V(SA);
D ;
P(SD)

forever;



02158 Concurrent Programming Fall 2024 Solutions Page 17

4. Solution for Sema.4

Proposal I

For each pair of processes (Pi ,Pj ) we introduce a semaphore Sij that is used for signalling
from Pi to Pj . Each process signals the two other ones and awaits a signal from each of
these:

var SAB ,SAC ,SBA,SBC ,SCA,SCB : semaphore := 0;

SYNCA:
V(SAB );
V(SAC );
P(SBA);
P(SCA);

SYNCB :
V(SBA);
V(SBC );
P(SAB );
P(SCB );

SYNCC :
V(SCA);
V(SCB );
P(SAC );
P(SBC );

This solution is readily shown to be correct using the semaphore invariant.

Proposal II

Each process has a semaphore to be signalled by the other processes. Each process starts
by signalling to each of the two other ones and then waits on its own semaphore for two
signals (which are expected to from each of the other processes).

var SA,SB ,SC : semaphore := 0;

SYNCA:
V(SB );
V(SC );
P(SA);
P(SA);

SYNCB :
V(SA);
V(SC );
P(SB );
P(SB );

SYNCC :
V(SA);
V(SB );
P(SC );
P(SC );

This solution is correct but works so marginally that it cannot be shown directly by use
of the semaphore invariant!

NB: The “dual” solution below, where each process signals its own semaphore twice and
then waits on each of the other semaphores does not work. The error is that a process may
“use” a signal that was supposed for another process.

var SA,SB ,SC : semaphore := 0;

SYNCA:
V(SA);
V(SA);
P(SB );
P(SC );

SYNCB :
V(SB );
V(SB );
P(SA);
P(SC );

SYNCC :
V(SC );
V(SC );
P(SA);
P(SB );



02158 Concurrent Programming Fall 2024 Solutions Page 18

The circular solution below does not work either :

var SA,SB ,SC : semaphore := 0;

SYNCA:
V(SB );
P(SA);

SYNCB :
V(SC );
P(SB );

SYNCC :
V(SA);
P(SC );

It has the general fault that a process does not wait for all the other processes. If a
signalling “the other way round” is added, it will work.



02158 Concurrent Programming Fall 2024 Solutions Page 19

Solutions for Exercises, Week 6

1. Solution for Andrews Ex. 4.24

The idea is that a writer should “take all n coconuts” to make sure that no readers are
active. This has to be done through n single P-operations, but this could lead to deadlock
if started by more than one writer. Therefore, writers first have to get the right to start
this operation by entring a critical region protected by another semaphore mutexw .

var rw : semaphore := n;
mutexw : semaphore := 1;

process Reader [i : 1..n] =
. . .
P(rw);
read the database;
V(rw);
. . .

process Writer [j : 1..m] =
. . .
P(mutexw );
for k in 1..n do P(rw);
read the database;
for k in 1..n do V(rw);
V(mutexw );
. . .

This solution is fair towards both readers and writers if the semaphores are strongly fair
(e.g. FIFO).

2. Solution for Andrews Ex. 4.6

To implement the sleep/wakeup mechanism, we need a semaphore for mutual exclusion
and one for suspension. A counter keeps track of the number of waiting processes.

var S : semaphore := 1;
Q : semaphore := 0;
K : integer := 0;

sleep: P(S );
K := K + 1;
V(S )
P(Q);
K := K − 1;
if K > 0 then V(Q)

else V(S )

wakeup: P(S );
if K > 0 then V(Q)

else V(S )

Note that a solution in which sleep increments K and waits on Q and wakeup signals K
times does not work, since the signals may be taken by new processes arriving later. The
above solution using the baton technique ensures that new processes are not allowed to
interfere during the cascaded wakeup.



02158 Concurrent Programming Fall 2024 Solutions Page 20

3. Solution for Andrews Ex. 4.14

In order to achieve concurrent deposits and concurrent deposits, we may try to do only the
slot allocation under mutual exclusion. Then, however, the filling (and emptying) of the
slots can occur out of order, rendering the use of the front and rear pointers unfeasible.
We may choose to accept the loose ordering and protect each slot by private full/empty
semaphores.

A more conservative option, shown here, is to keep the ordering by passing a signal down
the slots indicating that the previous slot has been filled/emptied. This is done through
two arrays of semaphores prev full and prev empty :

var buf [0..n − 1] : T ;
front , rear : integer := 0;
full : semaphore := 0;
empty : semaphore := n;
prev full [0..n − 1] : semaphore := 0;
prev empty [0..n − 1] : semaphore := 0;
mutexP ,mutexC : semaphore := 1;

V(prev full [0]); V(pref empty [0]); — first slot OK

process Producer [i : 1..M ] =
var data : T ;

inpos : integer ;
repeat

data := produce;
P(empty);
P(mutexP );
inpos := rear ;
rear := (rear + 1) mod n;
V(mutexP );
buf [inpos] := data;
P(prev full [inpos]);
V(full);
V(prev full [(inpos + 1) mod n)]);

forever

process Consumer [j : 1..N ] =
var result : T ;

outpos : integer ;
repeat
P(full);
P(mutexC );
outpos := front ;
front := (front + 1) mod n;
V(mutexC );
result := buf [outpos];
P(prev empty [outpos]);
V(empty);
V(prev empty [(outpos + 1) mod n)]);
consume result ;

forever

This higher degree of concurrency may be beneficial if the data type T is a large datatype
such that buffer insertions/removals take significant time.



02158 Concurrent Programming Fall 2024 Solutions Page 21

4. Solution for Sema.3

(a) The solution to the meeting problem (see [Basic]) does not work for binary semaphores
since the following execution is possible:

Process A signals SB .

Process B signals SA.

Process A passes P(SA), executes OPA and signals SB .

Now, two signallings on SB have been performed without an intermediate wait. The precise
effect of this depends on the particular kind of binary semaphore and should generally be
avoided.

(b) A solution with binary semaphores is obtained by (getting the idea of) interchanging P

and V in one of the processes:

SYNCA: V(SB );
P(SA);

SYNCB : P(SB );
V(SA);

That this solution still ensures that the two operations do not deviate from each other is
proven by using the semaphore invariants as before. Furthermore, we may show that the
values of the semaphores can never exceed 1. From the program, we obtain the following
inequalities:

#P(SA) ≤ #V(SB) ≤ #P(SA) + 1
#V(SA) ≤ #P(SB) ≤ #V(SA) + 1

Since SB is initialized to 0 we have the semaphore invariant #P(SB ) ≤ #V(SB ). Together
with the above we get:

#V(SA) ≤ #P(SB ) ≤ #V(SB ) ≤ #P(SA) + 1

Subtracting #P(SA) from both sides we get:

#V(SA)−#P(SA) ≤ 1

or, as the left hand side is precisely the semaphore value sa ,

sa ≤ 1

That is, using general semaphores the value of SA can never exceed 1. Thus, SA may as
well be implemented by a binary semaphore. Correspondingly we can show that sb ≤ 1.



02158 Concurrent Programming Fall 2024 Solutions Page 22

3. Solution for Concurrent Systems Exam December 2003, Problem 2

Question 2.1

The statements b, d , e, and f can be considered to be atomic since they only have only
one critical reference each. Both a and c have two critical references.

Question 2.2

(a)

✍✌✎☞
l0

✍✌✎☞
l1

✍✌✎☞
l2

❄

❄
a1: t := y

❄
a2: x := t + 1

P1:

✍✌✎☞
k0

✍✌✎☞
k1

✍✌✎☞
k2

❄

❄
b1: y := x + 2

❄
b2: x := 2

P2:

[Location and action labels not required.]

(b) Going through the 6 possible interleavings, the possible results for (x , y) are found to be:

(2, 3), (2, 2), (3, 2), (1, 2)

Question 2.3

P is preserved by a2 and a3. [By a2 since y < 0 and P imply x > 0 and hence y also
becomes positive.]

Q is preserved by all three actions. [Also by a2 since it cannot be executed when Q holds.]

R is preserved only by a2.

Question 2.4

(a) The sequence (0, 1)(1, 2) repeated forever will satisfy all parts of F .

(b) Assuming F , only the guard of a3 is constantly true and hence only a3 is guaranteed to
be eventually executed under weak fairness. [If x 6= 0 it must be positive due to ✷x ≥ 0
and hence y > x > 0 imply y > 1.]

(c) Assuming F , the guards of a1, a2, and a3 will be infinitely often true, and hence they will
be eventually executed under strong fairness. [The guard of a4 is not necessarily true, for
instance, it is never true in the state sequence proposed in (a).]



02158 Concurrent Programming Fall 2024 Solutions Page 23

4. Solution for Concurrent Systems Exam December 2006, Problem 2

Question 2.1

A1 A2

B1 B2C

Question 2.2

Corresponding to the Petri-net, we introduce a semaphore DoneA that counts the number
of A-operations executed. C may then be executed after n P-operations on DoneA. Q
controls the final synchronization by awaiting a signal from each finished B -operation on
a semaphore DoneB and then signalling each process Pi on a private semaphore GoA[i ]:

var DoneA : semaphore; // Counts no. of A’s done
DoneB : semaphore; // Counts no. of B ’s done
GoA[1..n] : semaphore; // OK to start Ai again.

All semaphores are initialized to 0

process P [i : 1..n];
repeat

Ai ;
V(DoneA);
Bi ;
V(DoneB);
P(GoA[i ])

forever

process Q ;
repeat

for j in 1..n do P(DoneA);
C ;
for j in 1..n do P(DoneB);
for j in 1..n do V(GoA[j ])

forever

[It is not possible to replace GoA[1..n] with a common semaphore since a P process
may wait again immediately after a wait and thereby could consume a token destined for
another process.]



02158 Concurrent Programming Fall 2024 Solutions Page 24

Question 2.3

monitor Sync

var adone : integer := 0; // No. of A’s done
done : integer := 0; // No. of B ’s and C done
OkC : condition; // Wait for all A’s done
Alldone : condition; // Wait for all B ’s and C done

procedure EndA()
adone := adone + 1;
if adone = n then signal(OkC )

procedure StartC ()
while adone < n do wait(OkC );
adone := 0

procedure Done()
done := done + 1;
if done < n + 1 then wait(Alldone)

else done := 0;
signal all(Alldone)

end

process P [i : 1..n];
repeat

Ai ;
Sync.EndA();
Bi ;
Sync.Done()

forever

process Q ;
repeat

Sync.StartC ();
C ;
Sync.Done()

forever

[Solution assumes no spurious wake-ups.]



02158 Concurrent Programming Fall 2024 Solutions Page 25

Solutions for Exercise Class 3

1. Solution for Mon.1

monitor Meet

var OK : boolean := false; — Has the the other arrived?
c : condition; — First one waits here

procedure SYNCA()
if OK then {OK := false; signal(c)}

else {OK := true; wait(c)}

procedure SYNCB() — As SYNCA, but coded alternatively
OK := ¬OK ;
if ¬OK then signal(c) else wait(c);

end

If we utilize the possibility of asking whether a condition queue is empty or not, we may
eliminate the variable OK and both operations become:

procedure SYNCA/B()

if empty(c) then wait(c) else signal(c)

There are a number of other (more complex) solution where different queues are used,
where each process has a flag etc.

2. See solution to point 6. below.

3. Both are used for letting a process wait until woken up, but they are indeed different:

• Semaphores may be used anywhere. Condition queues are associated with monitors
and may only be used within these.

• The wait operation on a condition queue atomically realeases the monitor while
putting the calling process on the queue.

If a P-operation on a semaphore is made within a monitor operation, the process will
just wait on the semaphore while the monitor’s critical region remains locked.

• If there are no waiting processes, a V operation on a semaphore is remembered by
incrementing the semaphore value, while signalling an empty condition queue has no
effect.



02158 Concurrent Programming Fall 2024 Solutions Page 26

4. Assuming that the variable b is protected by the monitor’s critical region, this will lead to
a deadlock since the critical region is not released during calls of sleep().

5. Based on the second solution idea in point 1. above, adding two monitor variables, first
and sum, the problem may be solved by the following:

monitor MeetAndSum

var first , sum : integer := 0;
c : condition; — First one waits here

function SYNCA/B(x : integer)

if empty(c) then {first := x ; wait(c)}
else {sum := first + x ; signal(c)};

return sum

end

Notice, that since the last process at the meeting may immediately call SYNC again before
the first of the processes has returned, the sum must be held in a separate variable, sum.
This variabale will not be overwritten, because the monitor is assumed to be used by two
dedicated processes only.

[Since conditions are not rechecked after the wait, this solutions would not work if spurious
wakeups could occur. But according to the standard definition (in [Andrews]) they do not.]

6. Solution for Mon.4

(a) monitor Event

var c : condition;

procedure sleep()
wait(c)

procedure wakeup()
signal all(c)

end

[Note that since no conditions are checked after the wait, this solution would not work if
spurious wake-ups could occur.]



02158 Concurrent Programming Fall 2024 Solutions Page 27

(b) To prevent spurious wakeups to let threads pass sleep() when no wakeup() is called, the
current state of the synchronization mechanism must be registered in the monitor. First
we try to use a flag go in combination with a count of the number of waiting threads:

monitor Event

var c : condition;
count : integer := 0;
go : boolean := false;

procedure sleep()
count := count + 1;
while ¬go do wait(c);
count := count − 1;
if count = 0 then go := false;

procedure wakeup()
if count > 0 then

go := true;
signal all(c)

end

This solution is robust towards spurious wakeups, but is not quite faithful to the specifi-
cation, since calls of sleep() made before all waiting threads have left the monitor are
allowed to pass in the same round. Depending on the actual use, this may be acceptable.

It turns out to be very difficult to control exactly which threads are woken up explicity
and which accidentally by spurious wakeups.

However, a simple and precise solution is obtained by using the idea of the ticket algorithm
where processes keep track of their position themselves.

monitor Event

var c : condition;
round : integer := 0;

procedure sleep()
myround : integer := round ;
while myround = round do wait(c);

procedure wakeup()
round := round + 1;
signal all(c)

end

For this we need an indefinite integer to count the current round. In practice though, a
64-bit long will suffice.

Also here, we could count the waiting threads and only increment round when there are
threads actually waiting.



02158 Concurrent Programming Fall 2024 Solutions Page 28

Solutions for Exercises, Week 7

1. Solution for Andrews Ex. 5.4

Given Figure 5.5 in [Andrews] (here in our notation):

monitor RW Controller :

var nr ,nw : integer := 0;
oktoread : condition;
oktowrite : condition;

procedure request read()
while nw > 0 do wait(oktoread);
nr := nr + 1;

procedure release read()
nr := nr − 1;
if nr = 0 then signal(oktowrite)

procedure request write()
while nr > 0 ∨ nw > 0 do wait(oktowrite);
nw := nw + 1;

procedure release write()
nw := nw − 1;
signal(oktowrite)
signal all(oktoread)

end

(a) The signal all operation can be replaced with repeated signalling:

while ¬empty(oktoread) do signal(oktoread);

Alternatively, cascaded wakeup can be used. Then signal all(oktoread) is replaced by a
single signal(oktoread), and request read becomes:

procedure request read()
while nw > 0 do wait(oktoread);
nr := nr + 1;
signal(oktoread);

Cascaded wakeup is especially useful in situations where the number processes to be awak-
ened is not known in advance, eg. may depend on parameters of the woken processes.



02158 Concurrent Programming Fall 2024 Solutions Page 29

(b) To give preference to writers, readers should be held back if there are any pending writers
in order to prevent starvation of writers. Likewise, writers should be favoured after a
writing phase. Thus, request read() and release write() are modified to:

procedure request read()
while nw > 0 ∨ ¬empty(oktowrite) do wait(oktoread);
nr := nr + 1;

procedure release write()
nw := nw − 1;
if ¬empty(oktowrite) then signal(oktowrite)

else signal all(oktoread)

(c) The solution below attempts to carefully alternate between readers and writers. Thus,
the last reader should start a writer and an ending writer should start a group of readers.
However, to prevent readers from starving writers, new readers should wait in a prequeue
if there are writers waiting. Since all waiting readers should start together, the normal
condition queue oktoread may be used for that purpose as well.

procedure request read()
if ¬empty(oktowrite) then wait(oktoread);
while nw > 0 do wait(oktoread);
nr := nr + 1;

procedure release write()
nw := nw − 1;
if ¬empty(oktoread) then signal all(oktoread)

else signal(oktowrite)

This solution, however, allows for new writers to overtake a woken writer and in theory a
particular writer may be starved forever. For a truly fair solution, see (d).

It is also possible to use the general fairness technique of alternating a priority between
the two groups. The priority is to be used only if both readers and writers are waiting.
Here we use a boolean variable reader prio indicating whether readers have priority (if
not, writers have).



02158 Concurrent Programming Fall 2024 Solutions Page 30

monitor Fairly Fair RW Controller :

var nr ,nw : integer := 0;
reader prio : boolean := true;
oktoread : condition;
oktowrite : condition;

procedure request read()
while nw > 0 ∨ (¬empty(oktowrite) ∧ ¬reader prio) do

wait(oktoread);
nr := nr + 1;

procedure release read()
reader prio := false;
nr := nr − 1;
if nr = 0 then signal(oktowrite)

procedure request write()
while nr > 0 ∨ nw > 0 ∨ (¬empty(oktoread) ∧ reader prio) do

wait(oktowrite);
nw := nw + 1;

procedure release write()
reader prio := true;
nw := nw − 1;
if ¬empty(oktoread) then signal all(oktoread)

else signal(oktowrite)
end

Here the priority is changed when (the first of) a group ends its operation. Again, in
theory readers may still be starved, if they do not all get out of request read before the
first of the reader group changes the priority. However, in practice this would probably
not be an issue if reading is a longer-lasting operation.

(d) [Advanced] In order to get a strict First-Come-First-Served discipline both readers and
writers must be processed in some common entrance queue. Further, if the first process
of this queue discovers that it cannot start (eg. being a writer when readers are active), it
will have to wait being the first to be considered next time. For this to work two condition
queues can be used: pre where processes queue up in FIFO order and front where the
(single) front process of the queue waits. To determine which queue to wait at, a count
ne of the currently entering readers/writers is maintained. Only when being the only one
entering, a process it can go directly to the front position. Whenever a process leaves the
front position, the next process from the pre-queue (if any) is moved to the front.



02158 Concurrent Programming Fall 2024 Solutions Page 31

monitor FCFS RW Controller :

var nr ,nw ,ne : integer := 0;
pre : condition;
next : condition;

procedure request read()
ne := ne + 1;
if ne > 1 then wait(pre);
if nw > 0 then wait(front);

signal(pre);
nr := nr + 1;
ne := ne − 1;

procedure release read()
nr := nr − 1;
if nr = 0 then signal(next);

procedure request write()
ne := ne + 1;
if ne > 1 then wait(pre);
if nw > 0 ∨ nr > 0 then wait(next);

signal(pre);
nw := nw + 1;
ne := ne − 1;

procedure release write()
nw := nw − 1;
signal(next);

end

[Due to the wait conditions not being rechecked, this solutions is not robust towards
spurious wakeups.]



02158 Concurrent Programming Fall 2024 Solutions Page 32

2. Solution for Andrews Ex. 5.8

(a) The required invariant must state that the balance never becomes negative:

I
∆
= Bal ≥ 0

The basic problem in this exercise is that the waiting condition for each withdraw(amount)
operation depends on the parameter value amount . A general solution to this is to use
a covering condition, i.e. to wake up all waiting processes, whenever the balance has im-
proved. It is assumed that all amounts belongs to a type of positive integers PosInt .

monitor SimpleAccount

var Bal : integer := 0;
positive : condition;

procedure deposit(amount : PosInt)
Bal := Bal + amount ;
signal all(positive);

procedure withdraw(amount : PosInt)
while Bal < amount do wait(positive);
Bal := Bal − amount ;

end

(b) Under the standard assumption the the condition queues are FIFO, the customers may be
served FCFS by waking only one at a time, but only as long as the balance is large enough
(using the magic amount function). Special care must be taken to prevent outside processes
from making withdrawals before the woken processes. This could be accomplished by
letting the deposit operation do the balance decrementation as in the FIFO Semaphore
solution shown in Andrews Figure 5.3. Here, however, we take a more general approach.
Whenever a withdrawal process is woken, the monitor is considered busy, and new processes
will have to wait. Now the processes are started in FIFO order by a cascade wakeup:

monitor MagicFSCSAccount

var Bal : integer := 0;
Busy : boolean := false;
positive : condition;

procedure deposit(amount : PosInt)
Bal := Bal + amount ;
if ¬Busy ∧ ¬empty(positive) ∧ amount(positive) ≤ Bal then

Busy := true;
signal(positive);

procedure withdraw(amount : PosInt)
if Busy ∨ ¬empty(positive) ∨ Bal < amount then

wait(positive);
Busy := false;



02158 Concurrent Programming Fall 2024 Solutions Page 33

Bal := Bal − amount ; — Bal assumed large enough
if ¬Busy ∧ ¬empty(positive) ∧ amount(positive) ≤ Bal then

Busy := true;
signal(positive);

end

Note that deposit processes may increment Bal , even when the monitor is busy, but that
will not violate the expectations of the woken withdrawal process.

(c) In order to implement the magic function amount giving the requested amount of the first
withdrawal process, two ideas may be applied:

• A new, separate condition queue is used by the first waiting process and that processes
may set a global amount variable. Further processes will have to wait on the old queue.
Now great care must be taken to ensure that exactly one and only one of the waiting
processes proceed to this queue.

• Within the monitor, a datastructure is maintained giving the amounts of the waiting
processes. Thus the datastructure will be parallel to the condition queue. Since the
queue is supposed to be FIFO, a list type will be appropiate.

Here we choose the latter approach, extending the above solution with a list type with
operations append , head and tail :

monitor FSCSAccount

var Bal : integer := 0;
Busy : boolean := false;
amounts : List of integer ;
positive : condition;

procedure deposit(amount : PosInt)
Bal := Bal + amount ;
if ¬Busy ∧ ¬empty(positive) ∧ head(amounts) ≤ Bal then

Busy := true;
amounts := tail(amounts);
signal(positive);

procedure withdraw(amount : PosInt)
if Busy ∨ ¬empty(positive) ∨ Bal < amount then

amounts := append(amounts, amount);
wait(positive);
Busy := false;

Bal := Bal − amount ; — Bal assumed large enough
if ¬Busy ∧ ¬empty(positive) ∧ head(amounts) ≤ Bal then

Busy := true;
amounts := tail(amounts);
signal(positive);

end



02158 Concurrent Programming Fall 2024 Solutions Page 34

Solutions for Exercises, Week 8

1. Solution for Mon.5

(a) A straightforward solution could be:

monitor ChunkSem

var s : integer := 0;
Empty : condition;
NonEmpty : condition;

procedure P()
while s = 0 do wait(NonEmpty);
s := s − 1;
if s = 0 then signal(Empty)

procedure V ()
while s 6= 0 do wait(Empty);
s := s +M ;
signal all(NonEmpty)

end

(b) For the monitor, the following safety invariant should hold:

I1
∆
= 0 ≤ s ≤ M

Provided M ≥ 1, this readily follows from the intialization and the while tests.

(c) We now try to express that that no calls of the P()-operation are ever “forgotten”. This
would be the case, if there remained processes but s was still positive. Thus we must
require:

I2
∆
= waiting(NonEmpty) > 0 ⇒ s = 0

This follows from the initialization, the fact that s = 0 when waiting on NonEmpty , and
the flushing of NonEmpty , when s is incremented.

(d) If many processes are waiting on NonEmpty and M is small, most of these processes will
be unnecessarily woken up. In order to wake up only as many as can carry through the
P()-operation, either a limited number of signals may be made or cascaded wakeup may
be applied. Here we show the cascade solution:

monitor ChunkSem

var s : integer := 0;
Empty : condition;
NonEmpty : condition;

procedure P()
while s = 0 do wait(NonEmpty);
s := s − 1;



02158 Concurrent Programming Fall 2024 Solutions Page 35

if s > 0 then signal(NonEmpty)
else signal(Empty)

procedure V ()
while s 6= 0 do wait(Empty);
s := s +M ;
signal(NonEmpty)

end

Now, the property I2 does not necessarily hold at entry to a monitor operation, since there
may be processes left on the queue while a woken process is waiting to get back to the
monitor. Therefore the invariant will have to be weakened taken the woken processes into
account. Due to the cascade, at least one process will be woken as long as s > 0. This
may be expressed as:

I3
∆
= waiting(NonEmpty) > 0 ⇒ s = 0 ∨ woken(NonEmpty) > 0

[This can be formulated in a number of equivalent ways.]

For a solution using limited signalling (awakening up to M processes), the invariant should
express that enough processes have been woken up:

I4
∆
= waiting(NonEmpty) > 0 ⇒ s ≤ woken(NonEmpty)

(e) Since both waits recheck their conditions, the solutions shown in (d) is robust towards
spurious wakeups. Also the invariants have been formulated with inequalities allowing for
an spontaneous increase of woken(NonEmpty).

(f) Since we have two waiting conditions the standard solution is to used a mixed condition
queue and use a covering condition:

class ChunkSem {

int s = 0;

public synchronized void P() {

while (s==0) try {wait();} catch (Exception e) {};

s--;

notifyAll();

}

public synchronized void V() {

while (s!=0) try {wait();} catch (Exception e) {};

s = s + M;

notifyAll();

}

}

However, since all calls of P() are woken up when s becomes positive, only V () operations
can be waiting when s > 0. Aside: This may be formally expressed by an invariant:

I5
∆
= s > 0 ⇒ waitingP()() = 0



02158 Concurrent Programming Fall 2024 Solutions Page 36

Therefore, the signalling in P() needs only be done when the condition for V () is true and
only has to awake a single thread.

public synchronized void P() {

while (s==0) try {wait();} catch (Exception e) {};

s--;

if (s==0) notify();

}

An attempt to use the cascade solution will render both P() and V () calls waiting in the
condition queue and hence will not work.

2. Solution for Mon.6

By introducing a variable, next , indicating the smallest waketime of any waiting processes,
the number of unnecessary wakeups may be considerably reduced. Using our notation:

monitor Timer

var tod : integer := 0;
next : integer∗ := ∞;
check : condition;

procedure delay(interval : integer)
var waketime : integer ;
waketime := tod + interval ;
while waketime > tod do

if waketime < next then next := waketime;
wait(check);

procedure tick()
tod := tod + 1;
if tod ≥ next then {next := ∞; signal all(check)}

end

Here integer∗ denotes the set of integers extended with ∞ larger than any integer.



02158 Concurrent Programming Fall 2024 Solutions Page 37

3. Solution for CP Exam December 1998, Problem 4

Question 4.1
A

C

P1

P2

P3

B

P4

Question 4.2

(a) Finishing processes satifying their maximum demands:

Available Can be finished
A B C

0 0 2 P2

0 1 2 P4

0 2 2 P1

1 2 2 P3

1 2 3

Since a sequence exists in which all the processes can have their maximal resource demands
satisfied, the situation is safe.

(b) Even though P4 is granted a C -instance, the above sequence is still possible and the
situation is still safe. Thus, P4 may be granted a C -instance according the banker’s
algorithm.

4. Solution for Silberschatz, Galvin & Gagne Exercise 7.11

For a sytem with m inscances of a resource type, a deadlock situation is characterized by
a number of processes that are requesting more instances while holding some already, but
no more instances are available.

A process Pi can request more instances only if it has not yet reached is maximal claim
MAXi . The maximal number of instances n processes may have reserved without having
reached their maximum claim (and thereby be able to finish) is given by:

n∑

i=1

(MAXi − 1) = (
n∑

i=1

MAXi)− n = MAX − n

Thus, no deadlock can occur if this number is less than the number of available instances
m:

MAX − n < m



02158 Concurrent Programming Fall 2024 Solutions Page 38

or
MAX < n +m

It is assumed that all processes need several instances, ie. MAXi > 1 for all i and, of
course, that MAXi ≤ m.



02158 Concurrent Programming Fall 2024 Solutions Page 39

Solutions for CP Exercises, Week 9

1. Solution for Andrews Ex. 7.3

(a) Assume that the array to be sorted is put in the variable input .

var input [1..n] : integer := . . . ;
output [1..n] : integer ;

chan pass[i : 0..n] : integer ;

process Feeder =
for i in 1..n do

send pass[0](input [i ]);

process HoldMin[i : 1..n] =
var min, x : integer ;
receive pass[i − 1](min);
for j in 1..n − 1 do

{ receive pass[i − 1](x );
if (x >= min) then send pass[i ](x )

else {send pass[i ](min); min := x}
};

send pass[i ](min);

process Collector =
for i in 1..n do

receive pass[n](output [n + 1− i ]);

Now, the values sent on pass[n] will be sorted and can be inserted into the result array
output by the collector.

Alternatively, the filter processes could directly set “its” element in the result array to the
minimum value and just pass on the remaining ones.



02158 Concurrent Programming Fall 2024 Solutions Page 40

2. Solution for Andrews Ex. 7.6

type Kind = Read | Write;

chan request : (Kind , integer);
chan release : ();
chan readok [i ..n] : ();
chan writeok [i ..m] : ();

process Reader [i : 1..n] =
. . .
send request(Read, i)
receive readok [i ]();
reading;
send release();
. . .

process Writer [j : 1..m] =
. . .
send request(Write, j )
receive writeok [j ]();
writing;
send release();
. . .

process RWControl =
var k : kind ;

id : integer ;
active : integer := 0;

receive request(k , id);
repeat

if k = Read then
while k = Read do

{ send okread [id ]();
active := active + 1;
receive request(k , id);

}
else

{ send okwrite[id ]();
active := 1;
receive request(k , id);

}
while active > 0 do

{receive release(); active := active − 1}
forever

Rather than accepting all request at any time and record pending request, it has here been
chosen to serve requests in order of arrival as long as possible, ie. either serve a single
write request or a consecutive sequence of read requests. Releases need only be considered
when a new request is about to be served.



02158 Concurrent Programming Fall 2024 Solutions Page 41

Solutions for Exercise Class 4

1. process Merge;
var x : integer ;
do A ? x → C ! x
[] B ? x → C ! x
od

2. process Sum;
var x , y : integer ;
do true →

if A ? x → B ? y
[] B ? y → A ? x
fi;
C ! x + y

od

3. In order to meet, all processes must synchronize pairwise by CSP-communications. Care
must be taken to avoid deadlock.

process P1;
repeat

P2 ! ();
P3 ? ();
...

forever

process P2;
repeat

P1 ? ();
P3 ! ();
...

forever

process P3;
repeat

P2 ? ();
P1 ! ();
...

forever

4. Solution for Andrews Ex. 8.14

module Account
op deposit(amount : posinteger);
op withdraw(amount : posinteger);

body

var bal : integer := 0;

process AccountServer ;
repeat

in deposit(amount) → bal := bal + amount
[] withdraw(amount) and amount ≤ bal → bal := bal − amount
ni

forever;

end Account ;



02158 Concurrent Programming Fall 2024 Solutions Page 42

5. Solution for Andrews Ex. 8.15

(a) module ABmeeting
op MeetA();
op MeetB();

body

process MeetingServer ;
repeat

in MeetA() →
in MeetB() → skip ni;
in MeetB() → skip ni;

ni
forever;

end ABmeeting ;

(b) module ABmeeting
op MeetA();
op MeetB();

body

process MeetingServer ;
repeat

in MeetA() →
in MeetB() →

in MeetB() → skip ni
ni

ni
forever;

end ABmeeting ;



02158 Concurrent Programming Fall 2024 Solutions Page 43

6. Solution for Rendez.1

(a) module Event
op Pass();
op Clear(var r : integer);
op Release(v : posinteger);

body

var S : integer ;

process EventServer ;
repeat

in Pass() and S > 0 → skip
[] Clear(var r) → r := S ; S := 0
[] Release(v) → S := S + v ;

for i in 1..?Pass do
in Pass() → skip ni

ni
forever;

end Event ;

[The loop in the Release branch ensures that all current calls of Pass are processed before
a possible call of Clear as in the monitor version.]

(b) The semaphore operation P(s) is implemented by:

var l : integer ;
repeat

e.Pass;
e.Clear(l)

until l > 0;
if l > 1 then e.Release(l − 1)

[The call of Pass ensures that the semaphore value is not tested (with Clear) until it is
known to have been positive. Hereby a busy wait is reduced to a semi-busy one being
much less resource demanding.]



02158 Concurrent Programming Fall 2024 Solutions Page 44

Solutions for Exercises, Week 10

1. Solution for Exam June 1994, Problem 3

Question 3.1

Before each round, P2 must synchronize with either P1 or P3. A Petri-net expressing this
is:

✍✌✎☞

✍✌✎☞

✍✌✎☞

✍✌✎☞

✍✌✎☞

✍✌✎☞
A B C❄

❄ ✆
✻

☎✛

❄

❄✝
✻

✞ ✲

✆
✻

☎✛

❄

❄✝
✻

✞ ✲

s s s
Question 3.2

[A synchronization can be implemented by signalling forth and back using two semaphores.
A choice between two synchronizations is then implemented by using a common semaphore
for the signalling:]

var SAC ,SB : semaphore := 0;

process PA =
repeat

wait(SAC );
signal(SB );
A

forever;

process PB =
repeat

signal(SAC );
wait(SB );
B

forever;

process PC =
repeat

wait(SAC );
signal(SB );
C

forever;

[Alternatively, wait and signal may be exchanged in all three processes.]



02158 Concurrent Programming Fall 2024 Solutions Page 45

2. Solution for Andrews Ex. 8.9

(a) A solution giving priority to writers is shown in [Andrews p.388] using the facility to query
the number pending calls of an operation op to block readers when there are pending
writers.

(b) A fair solution can be obtained from the above solution by explicitly processing the readers
inbetween the writers. Using our notation, we get:

module ReadersWriters
op read(var T );
op write(T );

body

op startread();
op endread();

var val : T ;

proc read(var r : T )
startread();
r := val ;
endread()

process Writer =
var nr : integer := 0;
repeat

in startread() and ?write = 0 → nr := nr + 1
[] endread() → nr := nr − 1
[] write(v : T ) and nr = 0 → val := v

while ?startread > 0 do
in startread() → nr := nr + 1 ni

ni
forever;

end ReadersWriters;

Although extra readers may slip through while the reader group is started in the write
branch, they cannot recur at the startread queue as they cannot pass endread . So for a
finite number of readers, the startread queue will eventually be emptied.

If only the readers waiting when the write has ended should be started, the while loop
may be replaced by:

for i in 1..?startread do
in startread() → nr := nr + 1 ni



02158 Concurrent Programming Fall 2024 Solutions Page 46

3. Solution for Andrews Ex. 8.12

Assuming that a guard using the function that gives the number of pending operation calls
is re-eavaluated whenever a call is made, we can do with:

module Barrier
op arrive();

body

process Control =
var nr : integer := 0;
repeat

in arrive() and ?arrive >= n → for i in 1..n − 1 do
in arrive() → skip ni

ni
forever;

end Barrier ;

If such size-dependent guards were not reevaluated, we could instead nest n accepts within
each other by recursion:

module Barrier
op arrive();

body

procedure meet(k : integer)
in arrive() → if k > 1 then meet(k − 1) ni

process Control =
var nr : integer := 0;
repeat

meet(n)
forever;

end Barrier ;

Aside: In Ada neither of these solutions are possible since the count-attribute is not
reevaluated and accept-statements can occur only in the main loop of a task (not within
procedures). Instead the requeue facility must be used.

[Solutions for Exam Dec. 2018 and Dec. 2020 will appear on the material page.]



02158 Concurrent Programming Fall 2024 Solutions Page 47

Solutions for Exercises, Week 11

1. Solution for ParComp.1

(a) With the given task execution times it is possible to make a perfect fit:

t1

t2

A B D

C E
✲

0 5 10

This gives an execution time of 8 seconds and a speedup of 16
8 = 2.

(b) If task E is postponed, the following scenario is possible:

t1

t2

A B C

D E
✲

0 5 10

with an execution time of 11 seconds and a speedup of 16
11 ≈ 1.45.



02158 Concurrent Programming Fall 2024 Solutions Page 48

2. Solution for Concurrent Systems Exam December 2002, Problem 3

Question 3.1

(a) I
∆
= open ⇒ waiting(Queue) = 0

(b) I is a monitor invariant since processes only wait at Queue if open is false and Queue is
emptied by signal all whenever open becomes true.

(c) If there are currrently less than k processes waiting when Go(k) is called, all of these are
woken, but new calls of Pass() still have to wait (if closed). As a special case, if the gate
is open, a call of Go(k) has no effect.

Question 3.2

module Gate
op Pass();
op Set(boolean);
op Go(integer);

body

process Keeper ;
var open : boolean := false;
repeat

in Pass() and open → skip

[] Set(b : boolean) → open := b

[] Go(k : integer) → for j in 1..min(k , ?Pass) do
in Pass() → skip ni

ni;
forever;

end Gate;



02158 Concurrent Programming Fall 2024 Solutions Page 49

3. Solution for Concurrent Systems Exam December 2003, Problem 3

Question 3.1

The first three calls of put() will enable one of the calls of unload() to succeed. The two
remaing calls of put() will then both succeed leaving the server with count = 2. The
second call of unload() will remain blocked waiting for acceptance by the server.

Question 3.2

monitor Batch

var count : integer := 0;
NonFull : condition;
Full : condition;

procedure unload() {
while count < N do wait(Full);
count := 0;
signal(NonFull);

}
procedure put() {

while count = N do wait(NonFull);
count := count + 1;
if count < N then signal(NonFull) else signal(Full);

}
end

In this solution, care has been taken to wake up only the mininum number of waiting
put-calls using a cascade wakeup on NonFull . A solution in which unload signals to all on
NonFull is also acceptable.



02158 Concurrent Programming Fall 2024 Solutions Page 50

4. Solution for Concurrent Systems Exam December 2004, Problem 3

Question 3.1

monitor Latch

var count : integer := 0;
IsZero : condition;

procedure set(k : integer) {
if k ≥ 0 then count := k ;
if count = 0 then signal all(IsZero)

}
procedure down() {

if count > 0 then count := count − 1;
if count = 0 then signal all(IsZero)

}
procedure await() {

while count 6= 0 do wait(IsZero)
}

end

[The signalling in set is necessary since count may be set to 0 (!). The while-loop in await
might be replaced by an if-statement although in the server-based solution, not all waiting
processes are guaranteed to get through before a set is called and hence the solution shown
here is closer to this semantics.]

Question 3.2

The given synchronize code indicates a solution with two simple (i.e. one-time) barriers
in a row. Care must be taken in resetting the simple barriers properly.

process Q ;
repeat

latch1.await();
latch3.set(n); latch4.set(1); — Prepare for second stop
latch2.set(0);
latch3.await();
latch1.set(n); latch2.set(1); — Prepare for next round
latch4.set(0);

forever;

[set(0) may be replaced by down(). Resetting of latch1 and latch3 may be done earlier.]



02158 Concurrent Programming Fall 2024 Solutions Page 51

Solutions for Exercises, Week 12

1. Solution for Concurrent Systems Exam December 2006, Problem 2

Question 2.1

A1 A2

B1 B2C

Question 2.2

Corresponding to the Petri-net, we introduce a semaphore DoneA that counts the number
of A-operations executed. C may then be executed after n P-operations on DoneA. Q
controls the final synchronization by awaiting a signal from each finished B -operation on
a semaphore DoneB and then signalling each process Pi on a private semaphore GoA[i ]:

var DoneA : semaphore; // Counts no. of A’s done
DoneB : semaphore; // Counts no. of B ’s done
GoA[1..n] : semaphore; // OK to start Ai again.

All semaphores are initialized to 0

process P [i : 1..n];
repeat

Ai ;
V(DoneA);
Bi ;
V(DoneB);
P(GoA[i ])

forever

process Q ;
repeat

for j in 1..n do P(DoneA);
C ;
for j in 1..n do P(DoneB);
for j in 1..n do V(GoA[j ])

forever

[It is not possible to replace GoA[1..n] with a common semaphore since a P process
may wait again immediately after a wait and thereby could consume a token destined for
another process.]



02158 Concurrent Programming Fall 2024 Solutions Page 52

Question 2.3

monitor Sync

var adone : integer := 0; // No. of A’s done
done : integer := 0; // No. of B ’s and C done
OkC : condition; // Wait for all A’s done
Alldone : condition; // Wait for all B ’s and C done

procedure EndA()
adone := adone + 1;
if adone = n then signal(OkC )

procedure StartC ()
while adone < n do wait(OkC );
adone := 0

procedure Done()
done := done + 1;
if done < n + 1 then wait(Alldone)

else done := 0;
signal all(Alldone)

end

process P [i : 1..n];
repeat

Ai ;
Sync.EndA();
Bi ;
Sync.Done()

forever

process Q ;
repeat

Sync.StartC ();
C ;
Sync.Done()

forever

[Solution assumes no spurious wake-ups.]



02158 Concurrent Programming Fall 2024 Solutions Page 53

2. Solution for Concurrent Systems Exam December 2008, Problem 3

Question 3.1

The operation must be declared as:

op get users() returns integer ;

and be accepted unconditionally by adding the following branch to both the inner and
outer in statements:

[] get users() returns integer → return users

Question 3.2

The module VarReg must be initialized with N = m.

Writer: set(0);
writing

set(m);

Readers: acquire();
reading

release();

Question 3.3

(a)

P1

A

B

P3

P2

C

(b) If the free C instance is granted to P2, it may finish. Then P1 and P2 can finish in arbitrary
order. Since all processes can finish, the situation would normally be called safe.

(c) If P3 calls RegC .acquire() (before P2 does) and henceforth P1 calls RegB .acquire() and P2

calls RegC .acquire(), all processes will have standing requests which cannot be fulfilled,
since all instances are acquired. Hence the system has deadlocked.

(d) An attempt is made to reserve the resources according to a strict ordering:

In P1, RegC .acquire() and RegA.acquire() are exchanged.
In P2, RegB .acquire() and RegC .acquire() are exchanged.
In P3, RegC .acquire() and RegA.acquire() are exchanged.

Hereby, the resources are reserved in the order: A, C and B .

There is a problem though, since P3 reserves its two A instances in two rounds and hence
the principle of deadlock prevention by strict ordering does not apply directly. However,
since P1 and P2 only need one A instance each, there is always one instance “reserved” for



02158 Concurrent Programming Fall 2024 Solutions Page 54

P3. We may think of this as being taken by the first call of RegA.acquire() in P3 and may
henceforth be ignored. Deadlock freedom then follows from the ordering principle applied
to the remaining resources.

Question 3.4

The operations are assumed to act upon the following shared variables:

var users : integer := 0;
max : natural := N ;
setting : boolean := false;

Now, the operations may be specified by:

acquire() : 〈 users < max → users := users + 1 〉
release() : 〈 users := users − 1 〉
set(k : natural) : 〈 ¬setting → max := k ; setting := true 〉;

〈 users ≤ max → setting := false 〉

Question 3.5

(a) monitor VarReg

var users : integer := 0;
max : natural := N ;
setting : boolean := false;
Room,SizeOk ,Done : condition;

procedure acquire() {
while users ≥ max do wait(Room);
users := users + 1;
if users < max then signal(Room) — Cascade wakeup

}
procedure release() {

users := users − 1;
if users = max then signal(SizeOk);
if users < max then signal(Room);

}
procedure set(k : natural) {

while setting do wait(Done);
max := k ;
setting := true;
while users > max do wait(SizeOk);
setting := false;
signal(Done);
if users < max then signal(Room);

}
end



02158 Concurrent Programming Fall 2024 Solutions Page 55

(b) Calls of acquire() should wait only if there is no room in the region:

I
∆
= waiting(Room) > 0 ⇒ users ≥ max

However, with the chosen cascade wakeup, this has to be relaxed in order to take leaving
calls into account:

I ′ ∆
= waiting(Room) > 0 ∧ woken(Room) = 0 ⇒ users ≥ max


