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Ever Growing Need for Computational Power

Modelling and analysis

• Climate prediction

• System biology — whole genome sequencing

• Particle collission analysis

• Market analysis

Entertainment

• Computer animation

• Virtual/augmented reality

• Speech recognition

Technology

• Machine learning



Performance Improvement Measures

Rely on Moore’s Law?

• ”Size and speed grows with a factor 2 every 2 years”

• Speed of a single processor has stalled at 2–3 GHz for the last 15 years

• Why? Heat!

Solution

• Many (releatively slow) processors on a single chip

• Such on-chip processing elements are often called cores

• In this course: processing element = core = processor = CPU

• We also assume processors to be uniform (having same capabilities)

• Recent development: performance cores vs. efficiency cores — not covered

Performance

Notions

• p number of processors

• T1 Time for sequential computation

• Tp Time for parallel computation (using p processors)

Measures

• Speedup
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Speedup

• Examples

Amdahl’s Law

• Let f be the ”sequential fraction” of a problem

f

• Then
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• For p →∞,

S → 1

f



Flynn’s Taxonomy

Von Neumann Machine

• IAS ∼1950



Data Path

Performance Improvement Tricks

Caching

• Bulk memory is slow relative to processor speed

• Exploit spatial and temporal locality of memory accesses

• Hold lines of memory in fast memory — the cache

• Many levels — memory hierarchy

Instruction-level parallelism

• Exploit sequential nature of instruction execution

• Overlap execution of several instruction at a time — pipelining

• Extended with branch prediction, speculative, and out-of-order execution

• Exploit the stalling periods of instruction execution

• Interleave execution of several instruction sequences — hyper-threading

• Requires register replication



Caching

• Basic idea:

• Many levels

Pipelining



Hyper-Threading

Fine-grained

Coarse-grained

SIMD

• Array Processor:

• Vector processors, vector instructions

• Graphical Processing Units (GPUs)



MIMD Architectures
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UMA Multiprocessors

• Uniform Memory Access
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Interconnect: Crossbar Switch
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NUMA Multiprocessors

• Non-Uniform Memory Access
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Interconnection Network Topologies I

Interconnection Network Topologies II



On-chip Interconnect: Toroidal Mesh
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Hybrid Architectures

• Cluster

• DTU HPC clusters: Eg. 30 nodes with 12+12 cores



Perspective: Parallel Architectures

Parallel Programming

• The art of utilizing machine architectures with many parallel processors

• Program each processor individually?
No — utilize OS scheduling of processes/threads

Principles

• Data parallelism: Dividing the data into sections which can processed in
parallel using the same procedure

• Task parallelism: Dividing the computation into phases which can be processed
in parallel using dedicated procedures

Approaches

• Manual reconstruction of program using explicit parallelism

• Manual parallelization annotation of sequential programs

• Decomposition into many small computation parts (tasks)
— to be submitted to a parallel computation engine

• Automatic parallelization of sequential programs



Work Decomposition — Task Parallelism
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Multiprocessors — work distribution

• Each processor is given a fair share of the data in memory

• Basis for OpenMP

OpenMP

Background

• Thread-programming on multi-processors: Much boiler-plate code

• 1990’ies: HW and SW vendors formed OpenMP ARB (Arch. Rev. Brd.)

• First OpenMP standard for Fortran in 1997 and C/C++ in 1998.

• Now at version 6.0 (November 2024) [964 pages!]

Idea

• To parallelize sequential programs by annotations (known as pragmas)

• Integrated within compilers (e.g. gcc)

• Supported by run-time library



OpenMP Directives

• In general, a pragma is an instruction or hint to the compiler

• C pragmas have the same form as preprocessor commands:

#pragma ...

• An OpenMP directive is a C-pragma of the form

#pragma omp ...

• Examples: #pragma omp parallel

#pragma omp critical

#pragma omp parallel for

• Applies to succeeding statement/structured block

• A clause is a modification to a directive, e.g.

#pragma omp parallel num threads(8)

OpenMP Threads

• Main thread forks into a team of threads which join again

Creative Commons



OpenMP Skeleton

#include <omp.h>

int main() {

#pragma omp parallel
{ /* block to be executed by a thread team */

int procs = omp_get_num_threads();

int id = omp_get_thread_num();

...

}

/* gather result */

}

• No. of threads determined by environment variable OMP NUM THREADS

• May be overridden by parallel clause: ...num threads(n)

Example: Hello OpenMP

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

void Hello(void) {

int my_rank = omp_get_thread_num();

int thread_count = omp_get_num_threads();

printf("Hello from thread %d of %d\n", my_rank, thread_count);

}

int main(int argc, char* argv[]) {

# pragma omp parallel
Hello();

}



Scoping

• Global variables are normally shared in a parallel block

• Parallel clause ...private(x , y) introduces local copies

Example

• int i, x, y;

x = 17;

y = 42;

# pragma omp parallel private(i, x);

for (i = 0; i < N; i++ } {

int z ;

x = x + 1;

z = x + y;

}

• Here i, x, and z are private to each thread

Critical region

• Critical pragma: #pragma omp critical (name)

• Effect: Succeeding statement is executed within critical region name

• If name omitted: Use global, default anonymous region

Example

• #pragma omp parallel
{ ...

# pragma omp critical (xreg)
x = x + 1;

# pragma omp critical (yreg)
y = y + 1;

...

}

• x and y are incremented atomically — but concurrently



Reduction

• Often results are collected in global variables protected by critical pragmas

• Parallel clause ...reduction(⊕:x):

• ⊕ is the reduction operator: +, *, &, |, &&, ||, max, min

• x is the reduction variable

Effect

1. Introduces a local copy xi of x for each thread i

2. Initializes xi = < neutral element >

3. At join: x = x⊕ x0 ⊕ x1 ⊕ · · · ⊕ xp−1

Parallel Loop Construct

• Iterations in for loops are often fairly independent

• They may be divided into blocks for data parallelism

• Parallel loop: #pragma omp parallel for

• Next statement must be a for loop

Effect

• Creates a team of threads (as would a parallel construct)

• Distributes the iterations of the for statement among the threads

• By default, the iterations are evenly divided into large blocks distributed among
the threads

• No explicit work division is needed

• Loop variable automatically becomes private

• Shared variables must still be protected or used for reduction



Example: Calculation of π

Given
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Sequential program

double pi

double factor = -1.0;

double sum = 0.0;

int i;

for (i = 0; i< n; i++) {

factor = -factor;

sum += factor/(2*i + 1);

}

pi = 4.0 * sum;

Example: Calculation of π (ERRONEOUS)

Given
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Parallel program

double pi

double factor = -1.0;

double sum = 0.0;

int i;

#pragma omp parallel for reduction(+: sum)

for (i = 0; i< n; i++) {

factor = -factor;

sum += factor/(2*i + 1);

}

pi = 4.0 * sum;



Example: Calculation of π (CORRECT)

Given
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Parallel program

double pi

double factor = -1.0;

double sum = 0.0;

int i;

#pragma omp parallel for reduction(+: sum) private(factor)

for (i = 0; i< n; i++) {

factor = (i%2 ==0) ? 1.0 : -1.0;

sum += factor/(2*i + 1);

}

pi = 4.0 * sum;

Work Load Balancing

• Goal: Keep all processors busy all the time

• Load not known in advance: Use dynamic distribution of smaller tasks



Bag-of-Tasks

• Many names: Bag-of-tasks, supervisor-worker, . . .

• Many frameworks: OpenMP, Java fork/join , .NET TPL, . . .

Graphics by Ruud van der Pas

Task Scheduling

• Given task sizes: A: 2, B 2, C : 3, D: 4, E : 6

• Fastest (3 worker threads)
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OpenMP Work Scheduling

• Default work division of parallel for not always adequate

• Loop clause ...schedule(kind [, k)] controls division

Kinds of schudulings

static Default. One (big) chunk of iterations per thread.

static, k Fixed round-robin distribution of k-iteration chunks

dynamic, k Dynamic distribution of k-iteration chunks

guided, k Proportional share of remaining iterations (at least k)

auto System controlled

runtime Determined by OMP SCHEDULE environment variable

OpenMP Tasks

• Introduced in OpenMP 3.0 — extended in 4.0 and 4.5

• A means for dynamic distribution of work on irregular structures:

I Unbounded while loops
I Lists and trees
I Producer/consumer schemes

• Tasks are generated (created, spawned) from other tasks

#pragma omp task

• Execution of tasks is distributed among current team of threads



Example: List Processing

• Given a linked list of elements pointed to by p

• while (p != null) {

compute(p);

p = p->next;

}

• #pragma omp parallel
{

#pragma omp single
while (p != null) {

#pragma omp task firstprivate(p)

compute(p);

p = p->next;

}

}

OpenMP Summary

• OpenMP attemps to make parallel programming declarative

• Still calls for explicit parallelism

• Supports both explicit and implicit work distribution

• Requires compiler integraton and a runtime

• Works only with C/C++ (and Fortran)

• Generalizes loop parallelism to task-based parallelism



Multicomputers — work distribution

• Each computer is given a part of the data in its own memory

• Calls for message passing — typically MPI

Message Passing Interface (MPI) — History

Background ∼ 1990

• Many vendors of ”supercomputers” with similar software

• A group of 80 people (vendors and researchers) formed MPI Forum

• Goal: A uniform way of programming distributed memory systems

• June 1994: Version 1.0

• API and protocols for interaction (ca. 130 functions)

Status

• De facto standard for programming distributed memory systems

• Official bindings for: C, C++, FORTRAN

• Unofficial bindings for: .NET, Java, Python, ...

• OpenMPI is a very common, open source implementation

• Current major versions: 3.1 (2015), 4.1 (2021), 5.0 (2023) . . .



MPI — Key Notions

Processes

• An MPI application consists of a set of communicating (OS) processes

• Processes are (usually) single-threaded
— Single Program Multiple Data (SPMD)

Communicators

• A communicator is communication universe with a set of processes

• Each process within a communicator has a unique rank (0...)

• The full set of started processes belong to MPI COMM WORLD

• Processes within a communicator may communicate using:
I Point-to-point communication
I Collective communication

MPI — Point-to-Point Communication

Operations

• In s: MPI Send(bufps , counts , types , dest, tags , comms)

• In r : MPI Recv(bufpr , countr , typer , source, tagr , commr , statusp)

• Type codes: MPI INT, MPI CHAR, MPI BYTE, . . .

• source and tagr may be wildcards: MPI ANY TAG, MPI ANY SOURCE (∗)
Communication

• If operations match: commr = comms , dest = r ,
source = s or source = ∗,
tagr = tags , or tagr = ∗,

types = typer
• Then: counts elements are copied from bufps to bufpr .

• If counts > countr an error occurs.

• From statusp, the source s, tags , and counts may be retrieved.



MPI — Point-to-Point Semantics

General

• Communication is reliable

• Communication between a given sender and a given receiver is ordered

• No fairness guarantee — starvation may occur

Standard mode

• MPI may buffer the message (or not).

• Both MPI Send and MPI Recv are blocking

• When MPI Send returns, its buffer may be reused

Alternatives

• Other modes: Synchronous, buffered, non-blocking, ...

• Many auxiliary operations, e.g. MPI Probe()

Example: Hello MPI World

int main(void) {

char greeting[MAX_STRING]; /* String storing message */

int comm_sz; /* Number of processes */

int my_rank; /* My process rank */

MPI_Init(NULL, NULL);

MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

...

MPI_Finalize();

}



Example: Hello MPI World

if (my_rank != 0) {

sprintf(greeting, "Greetings from process %d of %d!",

my_rank, comm_sz);

/* Send message to process 0 */

MPI_Send(greeting, strlen(greeting)+1, MPI_CHAR, 0, 0,

MPI_COMM_WORLD);

} else {

printf("Greetings from process %d of %d!\n", my_rank, comm_sz);

for (int q = 1; q < comm_sz; q++) {

/* Receive message from process q */

MPI_Recv(greeting, MAX_STRING, MPI_CHAR, q,

0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("%s\n", greeting);

}

}

Collective Communication

Basis

• Barrier:
...

MPI Barrier(c);
...

...

MPI Barrier(c);
...

...

MPI Barrier(c);
...

...

MPI Barrier(c);
...

• To be called by all in communicator c

Extensions

• Broadcast

• Scattering

• Gathering

• Reduction



Collective Communication — Allgather

Operation

• MPI Allgather(bufps , counts , types , bufpr , countr , typer , comm)

• To be called by all in communicator — senders/receivers

• Only bufpr acts as output (for all)— all others as input

• Must all agree on types = typer , counts = countr , comm

Effect

Collective Communication — Gather + processing = Reduce

Operation

• MPI Reduce(bufps , bufpr , count, type, op, dest, comm)

• To be called by all in communicator — senders and receiver

• Only bufpr acts as output (for dest)— all others as input

• Op codes: MPI SUM, MPI PROD, MPI MAX, MPI MIN, . . .

• Must all agree on type, count, op, dest, comm

Effect



MPI on Hybrid Architectures

• Cluster

• DTU HPC clusters: Eg. 30 nodes with 12+12 cores

Parallel Programming Summary

• Processors are programmed indirectly through threads or OS processes

• May be done through a bag-of-task (thread pool)

• The number of worker threads/processes should match the number of
processors

• Speedup and efficiency are important measures

• There are limits to what can be achieved (Amdahl’s Law)


