Course 02158

Parallel Computation

Hans Henrik Lgvengreen

DTU Compute

Ever Growing Need for Computational Power

Modelling and analysis

e Climate prediction

e System biology — whole genome sequencing
e Particle collission analysis

e Market analysis

Entertainment

e Computer animation

e Virtual /augmented reality

e Speech recognition

Technology

e Machine learning

Performance Improvement Measures

Rely on Moore's Law?

e "Size and speed grows with a factor 2 every 2 years”

e Speed of a single processor has stalled at 2-3 GHz for the last 15 years
e Why? Heat!

Solution

Many (releatively slow) processors on a single chip

Such on-chip processing elements are often called cores

In this course: processing element = core = processor = CPU

We also assume processors to be uniform (having same capabilities)

Recent development: performance cores vs. efficiency cores — not covered

Performance

Notions
e p number of processors
e T, Time for sequential computation

e T, Time for parallel computation (using p processors)

Measures
e Speedup
T
s & 1
Tp
e Efficiency
S T-
E 22 _ L
p pxTp,

Speedup

e Examples
60—
~<—N-body problem
50—
Linear speedup

40
Q.
3
3 :
8 a0l ’/._,,—O ——Awari
2] —

>
20
10
7 o—-—0—"—0—-—0 ""O_'_O—‘—O—-—(’) —~—Skyline matrix inversion

| | I | | |
0 10 20 30 40 50 60
Number of CPUs

Amdahl’s Law

o Let f be the "sequential fraction” of a problem

f’

e Then

e and

e For p — o0,

Flynn’s Taxonomy

Parallel computer architectures

7

SISD SIMD MISD MIMD
(Von Neumann) ?
Vector Array Multi- Multi-
processor processor processors computers
UMA COMA NUMA MPP cow
Bus Switched || CC-NUMA | | NC-NUMA Grid iﬂpbif'
Shared memory Message passing
Von Neumann Machine
e |AS ~1950
Central processing unit (CPU)
Control
unit
Arithmetic
logical unit
(ALU) I/O devices
A
Registers
|:| |:| Main . .
: : memory Disk Printer

Bus

Data Path

Registers

ALU input register
| A B — p g

/ALU input bus

ALU

ALU output register
A+D |4/ p g

Performance Improvement Tricks

Caching

e Bulk memory is slow relative to processor speed

e Exploit spatial and temporal locality of memory accesses
e Hold /ines of memory in fast memory — the cache

e Many levels — memory hierarchy

Instruction-level parallelism

Exploit sequential nature of instruction execution

Overlap execution of several instruction at a time — pipelining

Extended with branch prediction, speculative, and out-of-order execution

Exploit the stalling periods of instruction execution

Interleave execution of several instruction sequences — hyper-threading

e Requires register replication

Caching

Main
e Basic idea: memory
cPU -
. Cache
Bus
e Many levels
CPU
ackage ;
packag CPU chip Unified
L2 Unified
cache L3 cache Main
LY Z memory
(DRAM)
Processor __ |
board Keyboard Graphics Disk
controller controller controller
Split L1 instruction and data caches Board-level cache (SRAM)
Pipelining
S1 S2 S3 S4 S5
Instruction Instruction Operand Instruction Write
fetch decode fetch execution back
unit unit unit unit unit

S1:
S2:
S3:
S4:
S5:

—_
\V]

[=1[~]

=[] [
1] (] [=]

o 0[] [=][e]
o [o][of[=][«][=]
~ [el [[=]]
@ [&][o][=][N[=]
o [al[o][M[=][<]

w
1 B~

-
3
T

_
=

Hyper-Threading

Fine-grained

(@) |a1]a2] | |a3|a4|as| | [ae|a7|as] () |a1]B1]c1]A2]B2|c2|A3|B3|C3|A4]B4[CY]

®) [B1] | [B2] | |B3|B4|BS5|B6E|B7|BS]

(0 |ct|ce|caca] | [cs|ce] | [c7|cs| (e) |at]az] [B1] [ct|ce|ca|ca|as]as]as]
Cycle —» Cycle —»

Coarse-grained

SIMD

e Array Processor:

Control unit |

? Broadcasts instructions

~ 8 x 8 Processor/memory grid

H
H
H
=]
H

M Ommm

Processor -_

HEHBEEHH
Memoy T DO HEBEEEB
=g=N=g=N=N=N=0=

e Vector processors, vector instructions
e Graphical Processing Units (GPUs)

MIMD Architectures

Principal Division

Core 0 Core 0 Memory 0
Core 1 Core 1 Memory 1
g X
: = : 2
Core p-1 Core p-1 Memory p-1
(a) (b)
Shared memory Distributed memory
Shared-Memory Systems — Multiprocessors
CPU CPU CPU CPU
Interconnect

Memory

UMA Multiprocessors

e Uniform Memory Access

Chip 1 Chip 2

Core 1 Core 2 Core 1

Core 2

Interconnect

Memory

Interconnect: Bus

Shared memory

|

CPU CPU M CPU CPU

Cache

Bus

Interconnect:

Crossbar Switch

Memories
gl 3] |12l I=] 8] |3] |2] |[F Crosspoint
Ssti1el (el i1el (1=~ |~ switch is open
000 S—O>—P—0——— O/—\
01 -o—o—d———d—(dV—0
N
010 O—P———o——9
011 O—O0—O———0—— (b)
» Crosspoint
g 100 O—O—O—O>——& ()/g)_\ switch is closed
101 —O—O—— (4 o ——9
3/

110 S—D I S—O—S——
111 S—& / O—6—66—6—&—9O

Closed Oﬁ en ©

crosspoint pen

switch crqsspomt

switch
(a)
Interconnect: Switching Network

e Omega network

3 Stages
Memories
1A oA 3A { 000 |
b { 001
1
1B 2B 3B 010
{011]
b 100
1C 2C 3C
101
a 110
1D 2D 3D 111

NUMA Multiprocessors

e Non-Uniform Memory Access

Chip 1

Chip 2

Core 1

Core 2

Core 1

Core 2

Interconnect

Interconnect

Memory

Memory

Distributed Memory Systems — Multicomputers

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Interconnect

Interconnection Network Topologies |

Interconnection Network Topologies Il

e = —— —

=

—_—— -

On-chip Interconnect: Toroidal Mesh

D; f) e
(b)
Hybrid Architectures
e Cluster
CPU Memory Node
| |
Y Y
PO = R
| Local interconnect |— and | Local interconnect |— and
H:I /O H:I /O
— 7
Communication
processor

High-performance interconnection network

e DTU HPC clusters: Eg. 30 nodes with 12+12 cores

Perspective: Parallel Architectures

Private
memory Computer
Shared memory \\ \
Coprocessor

Thread \

CPU

‘ E] —{cPu
5
CHJ// C;u Ezi qﬂ ‘EEE"

Main CPU CPU

Tightly coupled Loosely coupled

(@) (b) (©) (d) ()

Parallel Programming

e The art of utilizing machine architectures with many parallel processors
e Program each processor individually?

No — utilize OS scheduling of processes/threads
Principles

e Data parallelism: Dividing the data into sections which can processed in
parallel using the same procedure

e Task parallelism: Dividing the computation into phases which can be processed
in parallel using dedicated procedures

Approaches
e Manual reconstruction of program using explicit parallelism
e Manual parallelization annotation of sequential programs

e Decomposition into many small computation parts (tasks)

— to be submitted to a parallel computation engine
e Automatic parallelization of sequential programs

Work Decomposition — Task Parallelism

A]_ A2 A3 < CPUl
(Y Y v)

Bl 82 B3 < CPUZ
(Y Y v)

C1 C2 C3 < CPU3

Work Decomposition — Data Parallelism

A; Az Az

Y Y Y

By B B

Y Y Y

G G G

f f i
CPU; CPU; CPU;

Multiprocessors — work distribution

e Each processor is given a fair share of the data in memory

plleffpP] Pl~——cpu plleffr] P
| | |] | I]]

P H - p P H =z peH P
- o - L4
P Shared P P (@ P
> memory [- A e
P H P P —% | B | P
| | l]] |]]

Pl P

e Basis for OpenMP

OpenMP

Background

Thread-programming on multi-processors: Much boiler-plate code
1990'ies: HW and SW vendors formed OpenMP ARB (Arch. Rev. Brd.)
First OpenMP standard for Fortran in 1997 and C/C++ in 1998.

e Now at version 6.0 (November 2024) [964 pages!]

Idea

e To parallelize sequential programs by annotations (known as pragmas)
e Integrated within compilers (e.g. gcc)

e Supported by run-time library

OpenMP Directives

e In general, a pragma is an instruction or hint to the compiler
e C pragmas have the same form as preprocessor commands:
#pragma ...
e An OpenMP directive is a C-pragma of the form
#pragma omp

e Examples: #pragma omp parallel

#pragma omp critical

#pragma omp parallel for
e Applies to succeeding statement/structured block
e A clause is a modification to a directive, e.g.

#pragma omp parallel num threads(8)

OpenMP Threads

e Main thread forks into a team of threads which join again

Parallel Task | Parallel Task Il Parallel Task Il

-

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread / oA -
e e’ —

Creative Commons

OpenMP Skeleton

#include <omp.h>
int main() {

#pragma omp parallel
{ /* block to be exzecuted by a thread team */
int procs = omp_get_num_threads();
int id = omp_get_thread_num() ;

/* gather result */
}
e No. of threads determined by environment variable OMP_NUM_THREADS
e May be overridden by parallel clause: ...num _threads(n)

Example: Hello OpenMP

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

void Hello(void) {
int my_rank = omp_get_thread_num();

int thread_count = omp_get_num_threads() ;

printf ("Hello, from thread, j%d of %d\n", my_rank, thread_count);
}

int main(int argc, charx argv([]) {

pragma omp parallel
Hello();

Scoping

e Global variables are normally shared in a parallel block

e Parallel clause .. .private(x,y) introduces local copies

Example

e int i, x, y;

X
y

17;
42;

pragma omp parallel private(i, x);
for (i = 0; i < N; i++ } {
int z ;
x =x + 1;
zZ=x+Y;

¥

e Here i, x, and z are private to each thread

Critical region

e Critical pragma: #pragma omp critical (name)
e Effect: Succeeding statement is executed within critical region name

e If name omitted: Use global, default anonymous region

Example

e F#pragma omp parallel
{ ...
pragma omp critical (xreg)
X =x + 1;
pragma omp critical (yreg)
y=y+1

}

e x and y are incremented atomically — but concurrently

Reduction

e Often results are collected in global variables protected by critical pragmas
e Parallel clause . ..reduction(®:x):

e &P is the reduction operator. +, *, &, |, &&, ||, max, min

e x is the reduction variable

Effect

1. Introduces a local copy x; of x for each thread i/
2. Initializes x; = < neutral element >
3. At join: x =xBxoDx1 D+ D Xp_1

Parallel Loop Construct

e |terations in for loops are often fairly independent
e They may be divided into blocks for data parallelism
e Parallel loop: #pragma omp parallel for

e Next statement must be a for loop

Effect

e Creates a team of threads (as would a parallel construct)

e Distributes the iterations of the for statement among the threads

e By default, the iterations are evenly divided into large blocks distributed among
the threads

e No explicit work division is needed

e Loop variable automatically becomes private

e Shared variables must still be protected or used for reduction

Example: Calculation of 7

Given

Sequential program

double pi

double factor = -1.0;
double sum = 0.0;

int i;

for (i = 0; i< n; i++) {
factor = -factor;
sum += factor/(2*i + 1);
}

pi = 4.0 * sum;

Example: Calculation of 1 (ERRONEOQUS)

Given
o
A | 1 1 1
—4 —1) ——4. (1-Z4Z—Z4+=-—
" 2()21 (57779
Parallel program
double pi
double factor = -1.0;
double sum = 0.0;
int i;

#pragma omp parallel for reduction(+: sum)
for (i = 0; i< n; i++) {

factor = -factor;

sum += factor/(2%i + 1);

}

pi = 4.0 * sum;

Example: Calculation of 7 (CORRECT)

Given

Parallel program

double pi

double factor = -1.0;
double sum = 0.0;

int i;

#pragma omp parallel for reduction(+: sum) private(factor)
for (i = 0; i< n; i++) {

factor = (i%2 ==0) ? 1.0 : -1.0;

sum += factor/(2*i + 1);
}

pi = 4.0 * sum;

Work Load Balancing

e Goal: Keep all processors busy all the time

PINP|IP]|PJ|~—CPU PIHPIPI| P

I I | | [1 1 |
P H — P P H — {:}—P
P Shared 1" an é_P
b L memory e b | A 5
P — P P—ﬁ I —P

| |

PIP

e Load not known in advance: Use dynamic distribution of smaller tasks

Bag-of-Tasks

e Many names: Bag-of-tasks, supervisor-worker, . ..
e Many frameworks: OpenMP, Java fork/join , .NET TPL, ...

. Thread

| Thread

' |

. Thread

. Thread

Graphics by Ruud van der Pas

Task Scheduling

e Given task sizes: A: 2, B
o Fastest (3 worker threads)

e Slowest

2,

t1

to

C:3,D:4 E: 6

OpenMP Work Scheduling

e Default work division of parallel for not always adequate

e Loop clause . ..schedule (kind|, k)] controls division

Kinds of schudulings

static Default. One (big) chunk of iterations per thread.
static, k Fixed round-robin distribution of k-iteration chunks
dynamic, k Dynamic distribution of k-iteration chunks

guided, k Proportional share of remaining iterations (at least k)
auto System controlled

runtime Determined by OMP_SCHEDULE environment variable

OpenMP Tasks

Introduced in OpenMP 3.0 — extended in 4.0 and 4.5

A means for dynamic distribution of work on irregular structures:

» Unbounded while loops
> Lists and trees
» Producer/consumer schemes

Tasks are generated (created, spawned) from other tasks
#pragma omp task

Execution of tasks is distributed among current team of threads

Example: List Processing

e Given a linked list of elements pointed to by p

e while (p !'= null) {
compute(p) ;
P = p—>next;
}

e Fpragma omp parallel
{
#pragma omp single
while (p !'= null) {
#pragma omp task firstprivate(p)
compute (p) ;
P = p—>next;

¥

OpenMP Summary

OpenMP attemps to make parallel programming declarative

Still calls for explicit parallelism

Supports both explicit and implicit work distribution

Requires compiler integraton and a runtime
Works only with C/C++ (and Fortran)

Generalizes loop parallelism to task-based parallelism

Multicomputers — work distribution

e Each computer is given a part of the data in its own memory

MIIM|| M| M f«— Private memory = %ll {:}
|]]] | | | |
P P P P |=—CPU P"P P P |=—CPU
|]]] | | | |
MHP H — P H M — P — P H
MH e H Message- o M Ll p Message- L p 4
passing passing
interconnection interconnection
MHPMH network H PAM 1 P [network — P %4
MHP H — P H M {"—P— H PR
|]]] | | | |
P P P P P || P P p
|]]]] |
IO KT
(b)

(@)

e Calls for message passing — typically MPI

Message Passing Interface (MPI) — History

Background ~ 1990

e Many vendors of "supercomputers” with similar software

e A group of 80 people (vendors and researchers) formed MPI Forum
e Goal: A uniform way of programming distributed memory systems
e June 1994: Version 1.0

® API and protocols for interaction (ca. 130 functions)

Status

e De facto standard for programming distributed memory systems

e Official bindings for: C, C4++, FORTRAN

e Unofficial bindings for: .NET, Java, Python, ...

e OpenMPI is a very common, open source implementation

e Current major versions: 3.1 (2015), 4.1 (2021), 5.0 (2023) ...

MPI — Key Notions

Processes
e An MPI application consists of a set of communicating (OS) processes

e Processes are (usually) single-threaded
— Single Program Multiple Data (SPMD)

Communicators
e A communicator is communication universe with a set of processes

e Each process within a communicator has a unique rank (0...)

e The full set of started processes belong to MPT_COMM_WORLD
e Processes within a communicator may communicate using:
» Point-to-point communication
» Collective communication
MPI — Point-to-Point Communication
Operations

e In s: MPI Send(bufps, counts, types, dest, tags, commsy)

e In r: MPI Recv(bufp,, count,, type,, source, tag,, comm,, statusp)

e Type codes: MPI _INT, MPI CHAR, MPI BYTE, ...

e source and tag, may be wildcards: MPT_ANY TAG, MPI_ANY_SOURCE (x)
Communication

o |f operations match: comm, = comms, dest = r,
source = s or source = x,
tag, — tags,or tag, = x*,
types = type,
e Then: counts elements are copied from bufps to bufp,.
e |f counts > count, an error occurs.

e From statusp, the source s, tags, and counts may be retrieved.

MPI — Point-to-Point Semantics

General

e Communication is reliable

e Communication between a given sender and a given receiver is ordered
e No fairness guarantee — starvation may occur

Standard mode

e MPI may buffer the message (or not).

e Both MPI_Send and MPI_Recv are blocking

e When MPI _Send returns, its buffer may be reused

Alternatives

e Other modes: Synchronous, buffered, non-blocking, ...

e Many auxiliary operations, e.g. MPI_Probe ()

Example: Hello MPI World

int main(void) {
char greeting[MAX_STRING]; /* String storing message */
int comm_sz; /* Number of processes */
int my_rank; /* My process rank */
MPI_Init(NULL, NULL);
MPI_Comm_size (MPI_COMM_WORLD, &comm_sz) ;

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

MPI_Finalize();

Example: Hello MPI World

if (my_rank != 0) {
sprintf (greeting, "Greetings, from process %d of %d!",
my_rank, comm_sz);
/* Send message to process 0 */
MPI_Send(greeting, strlen(greeting)+1, MPI_CHAR, O, O,
MPI_COMM_WORLD) ;
} else {
printf ("Greetings from process d of %d!\n", my_rank, comm_sz);
for (int g = 1; q < comm_sz; g++) {
/* Receive message from process q */
MPI_Recv(greeting, MAX_STRING, MPI_CHAR, q,
0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf ("%s\n", greeting);
}

Collective Communication

Basis

e Barrier:

MPI _Barrier(c); MPI_Barrier(c); MPI_Barrier(c); MPI_Barrier(c);

e To be called by all in communicator ¢
Extensions

e Broadcast

e Scattering

e Gathering

e Reduction

Collective Communication — Allgather

Operation

e MPI Allgather(bufps, counts, types, bufp,, count,, type,, comm)
e To be called by all in communicator — senders/receivers

e Only bufp, acts as output (for all)— all others as input

e Must all agree on types = type,, counts = count,, comm

©= O O
O O O

Collective Communication — Gather + processing = Reduce

Operation

e MPI Reduce(bufps, bufp,, count, type, op, dest, comm)

e To be called by all in communicator — senders and receiver
e Only bufp, acts as output (for dest)— all others as input

e Op codes: MPI_SUM, MPI_PROD, MPI_MAX, MPI_MIN, ...

e Must all agree on type, count, op, dest, comm

OE OF OF OF

MPI_SUM

(o)l

MPI on Hybrid Architectures

e (luster
CPU Memory Node
| |
Y Y
U SR Q o
Local interconnect |— and Local |n1erconnect and
l 1/0 l I/O
7
Communication
processor

High-performance interconnection network

e DTU HPC clusters: Eg. 30 nodes with 12+12 cores

Parallel Programming Summary

e Processors are programmed indirectly through threads or OS processes

May be done through a bag-of-task (thread pool)

processors

Speedup and efficiency are important measures

There are limits to what can be achieved (Amdahl’s Law)

The number of worker threads/processes should match the number of

