
Course 02158

Parallel Computation

Hans Henrik Løvengreen

DTU Compute

Ever Growing Need for Computational Power

Modelling and analysis

• Climate prediction

• System biology — whole genome sequencing

• Particle collission analysis

• Market analysis

Entertainment

• Computer animation

• Virtual/augmented reality

• Speech recognition

Technology

• Machine learning

Performance Improvement Measures

Rely on Moore’s Law?

• ”Size and speed grows with a factor 2 every 2 years”

• Speed of a single processor has stalled at 2–3 GHz for the last 15 years

• Why? Heat!

Solution

• Many (releatively slow) processors on a single chip

• Such on-chip processing elements are often called cores

• In this course: processing element = core = processor = CPU

• We also assume processors to be uniform (having same capabilities)

• Recent development: performance cores vs. efficiency cores — not covered

Performance

Notions

• p number of processors

• T1 Time for sequential computation

• Tp Time for parallel computation (using p processors)

Measures

• Speedup

S
∆
=

T1

Tp

• Efficiency

E
∆
=

S

p
=

T1

p × Tp

Speedup

• Examples

Amdahl’s Law

• Let f be the ”sequential fraction” of a problem

f

• Then

Tp = f × T1 +
(1− f)× T1

p

• and

S =
T1

Tp
=

T1

f × T1 + (1−f)×T1

p

=
1

f + (1−f)
p

• For p →∞,

S → 1

f

Flynn’s Taxonomy

Von Neumann Machine

• IAS ∼1950

Data Path

Performance Improvement Tricks

Caching

• Bulk memory is slow relative to processor speed

• Exploit spatial and temporal locality of memory accesses

• Hold lines of memory in fast memory — the cache

• Many levels — memory hierarchy

Instruction-level parallelism

• Exploit sequential nature of instruction execution

• Overlap execution of several instruction at a time — pipelining

• Extended with branch prediction, speculative, and out-of-order execution

• Exploit the stalling periods of instruction execution

• Interleave execution of several instruction sequences — hyper-threading

• Requires register replication

Caching

• Basic idea:

• Many levels

Pipelining

Hyper-Threading

Fine-grained

Coarse-grained

SIMD

• Array Processor:

• Vector processors, vector instructions

• Graphical Processing Units (GPUs)

MIMD Architectures

Principal Division

(a) (b)

Core 0 Memory 0

Core 1 Memory 1

Core p −1 Memory p −1

N
e
tw

o
rk

Core 0

Core 1
M

e
m

o
ry

Core p −1

Shared memory Distributed memory

Shared-Memory Systems — Multiprocessors

Interconnect

CPU CPU CPU CPU

Memory

UMA Multiprocessors

• Uniform Memory Access

Interconnect

Core 1 Core 1Core 2 Core 2

Chip 2Chip 1

Memory

Interconnect: Bus

CPU CPU M

Shared memory

Shared
memory

Bus

(a)

CPU CPU M

Private memory

(b)

CPU CPU M

(c)

Cache

Interconnect: Crossbar Switch

Memories
C

P
U

s

Closed

crosspoint

switch

Open

crosspoint

switch

(a)

(b)

(c)

Crosspoint

switch is closed

Crosspoint

switch is open

000

001

010

011

100

101

110

111

1
0

0

1
0

1

1
1

0

1
1

1

0
0

0

0
0

1

0
1

0

0
1

1

Interconnect: Switching Network

• Omega network

CPUs

b

b

b
b

a

a a

a

3 Stages

Memories

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

1A

1B

1C

1D

2A

2B

2C

2D

3A

3B

3C

3D

NUMA Multiprocessors

• Non-Uniform Memory Access

Core 1 Core 2

Interconnect Interconnect

MemoryMemory

Core 1 Core 2

Chip 2Chip 1

Distributed Memory Systems — Multicomputers

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Interconnect

Interconnection Network Topologies I

Interconnection Network Topologies II

On-chip Interconnect: Toroidal Mesh

(b)

P1 P2 P3

(a)

Hybrid Architectures

• Cluster

• DTU HPC clusters: Eg. 30 nodes with 12+12 cores

Perspective: Parallel Architectures

Parallel Programming

• The art of utilizing machine architectures with many parallel processors

• Program each processor individually?
No — utilize OS scheduling of processes/threads

Principles

• Data parallelism: Dividing the data into sections which can processed in
parallel using the same procedure

• Task parallelism: Dividing the computation into phases which can be processed
in parallel using dedicated procedures

Approaches

• Manual reconstruction of program using explicit parallelism

• Manual parallelization annotation of sequential programs

• Decomposition into many small computation parts (tasks)
— to be submitted to a parallel computation engine

• Automatic parallelization of sequential programs

Work Decomposition — Task Parallelism

A1

B1

C1

A2

B2

C2

A3

B3

C3

CPU1

CPU2

CPU3

Work Decomposition — Data Parallelism

A1

B1

C1

A2

B2

C2

A3

B3

C3

CPU1 CPU2 CPU3

Multiprocessors — work distribution

• Each processor is given a fair share of the data in memory

• Basis for OpenMP

OpenMP

Background

• Thread-programming on multi-processors: Much boiler-plate code

• 1990’ies: HW and SW vendors formed OpenMP ARB (Arch. Rev. Brd.)

• First OpenMP standard for Fortran in 1997 and C/C++ in 1998.

• Now at version 6.0 (November 2024) [964 pages!]

Idea

• To parallelize sequential programs by annotations (known as pragmas)

• Integrated within compilers (e.g. gcc)

• Supported by run-time library

OpenMP Directives

• In general, a pragma is an instruction or hint to the compiler

• C pragmas have the same form as preprocessor commands:

#pragma ...

• An OpenMP directive is a C-pragma of the form

#pragma omp ...

• Examples: #pragma omp parallel

#pragma omp critical

#pragma omp parallel for

• Applies to succeeding statement/structured block

• A clause is a modification to a directive, e.g.

#pragma omp parallel num threads(8)

OpenMP Threads

• Main thread forks into a team of threads which join again

Creative Commons

OpenMP Skeleton

#include <omp.h>

int main() {

#pragma omp parallel
{ /* block to be executed by a thread team */

int procs = omp_get_num_threads();

int id = omp_get_thread_num();

...

}

/* gather result */

}

• No. of threads determined by environment variable OMP NUM THREADS

• May be overridden by parallel clause: ...num threads(n)

Example: Hello OpenMP

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

void Hello(void) {

int my_rank = omp_get_thread_num();

int thread_count = omp_get_num_threads();

printf("Hello from thread %d of %d\n", my_rank, thread_count);

}

int main(int argc, char* argv[]) {

pragma omp parallel
Hello();

}

Scoping

• Global variables are normally shared in a parallel block

• Parallel clause ...private(x , y) introduces local copies

Example

• int i, x, y;

x = 17;

y = 42;

pragma omp parallel private(i, x);

for (i = 0; i < N; i++ } {

int z ;

x = x + 1;

z = x + y;

}

• Here i, x, and z are private to each thread

Critical region

• Critical pragma: #pragma omp critical (name)

• Effect: Succeeding statement is executed within critical region name

• If name omitted: Use global, default anonymous region

Example

• #pragma omp parallel
{ ...

pragma omp critical (xreg)
x = x + 1;

pragma omp critical (yreg)
y = y + 1;

...

}

• x and y are incremented atomically — but concurrently

Reduction

• Often results are collected in global variables protected by critical pragmas

• Parallel clause ...reduction(⊕:x):

• ⊕ is the reduction operator: +, *, &, |, &&, ||, max, min

• x is the reduction variable

Effect

1. Introduces a local copy xi of x for each thread i

2. Initializes xi = < neutral element >

3. At join: x = x⊕ x0 ⊕ x1 ⊕ · · · ⊕ xp−1

Parallel Loop Construct

• Iterations in for loops are often fairly independent

• They may be divided into blocks for data parallelism

• Parallel loop: #pragma omp parallel for

• Next statement must be a for loop

Effect

• Creates a team of threads (as would a parallel construct)

• Distributes the iterations of the for statement among the threads

• By default, the iterations are evenly divided into large blocks distributed among
the threads

• No explicit work division is needed

• Loop variable automatically becomes private

• Shared variables must still be protected or used for reduction

Example: Calculation of π

Given

π = 4 ·
∞∑

i=0

(−1)i
1

2i + 1
== 4 ·

(
1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

)

Sequential program

double pi

double factor = -1.0;

double sum = 0.0;

int i;

for (i = 0; i< n; i++) {

factor = -factor;

sum += factor/(2*i + 1);

}

pi = 4.0 * sum;

Example: Calculation of π (ERRONEOUS)

Given

π = 4 ·
∞∑

i=0

(−1)i
1

2i + 1
== 4 ·

(
1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

)

Parallel program

double pi

double factor = -1.0;

double sum = 0.0;

int i;

#pragma omp parallel for reduction(+: sum)

for (i = 0; i< n; i++) {

factor = -factor;

sum += factor/(2*i + 1);

}

pi = 4.0 * sum;

Example: Calculation of π (CORRECT)

Given

π = 4 ·
∞∑

i=0

(−1)i
1

2i + 1
== 4 ·

(
1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

)

Parallel program

double pi

double factor = -1.0;

double sum = 0.0;

int i;

#pragma omp parallel for reduction(+: sum) private(factor)

for (i = 0; i< n; i++) {

factor = (i%2 ==0) ? 1.0 : -1.0;

sum += factor/(2*i + 1);

}

pi = 4.0 * sum;

Work Load Balancing

• Goal: Keep all processors busy all the time

• Load not known in advance: Use dynamic distribution of smaller tasks

Bag-of-Tasks

• Many names: Bag-of-tasks, supervisor-worker, . . .

• Many frameworks: OpenMP, Java fork/join , .NET TPL, . . .

Graphics by Ruud van der Pas

Task Scheduling

• Given task sizes: A: 2, B 2, C : 3, D: 4, E : 6

• Fastest (3 worker threads)

t1

t2

t3

A C

B D

E
-

• Slowest

t1

t2

t3

A B

D

C E
-

OpenMP Work Scheduling

• Default work division of parallel for not always adequate

• Loop clause ...schedule(kind [, k)] controls division

Kinds of schudulings

static Default. One (big) chunk of iterations per thread.

static, k Fixed round-robin distribution of k-iteration chunks

dynamic, k Dynamic distribution of k-iteration chunks

guided, k Proportional share of remaining iterations (at least k)

auto System controlled

runtime Determined by OMP SCHEDULE environment variable

OpenMP Tasks

• Introduced in OpenMP 3.0 — extended in 4.0 and 4.5

• A means for dynamic distribution of work on irregular structures:

I Unbounded while loops
I Lists and trees
I Producer/consumer schemes

• Tasks are generated (created, spawned) from other tasks

#pragma omp task

• Execution of tasks is distributed among current team of threads

Example: List Processing

• Given a linked list of elements pointed to by p

• while (p != null) {

compute(p);

p = p->next;

}

• #pragma omp parallel
{

#pragma omp single
while (p != null) {

#pragma omp task firstprivate(p)

compute(p);

p = p->next;

}

}

OpenMP Summary

• OpenMP attemps to make parallel programming declarative

• Still calls for explicit parallelism

• Supports both explicit and implicit work distribution

• Requires compiler integraton and a runtime

• Works only with C/C++ (and Fortran)

• Generalizes loop parallelism to task-based parallelism

Multicomputers — work distribution

• Each computer is given a part of the data in its own memory

• Calls for message passing — typically MPI

Message Passing Interface (MPI) — History

Background ∼ 1990

• Many vendors of ”supercomputers” with similar software

• A group of 80 people (vendors and researchers) formed MPI Forum

• Goal: A uniform way of programming distributed memory systems

• June 1994: Version 1.0

• API and protocols for interaction (ca. 130 functions)

Status

• De facto standard for programming distributed memory systems

• Official bindings for: C, C++, FORTRAN

• Unofficial bindings for: .NET, Java, Python, ...

• OpenMPI is a very common, open source implementation

• Current major versions: 3.1 (2015), 4.1 (2021), 5.0 (2023) . . .

MPI — Key Notions

Processes

• An MPI application consists of a set of communicating (OS) processes

• Processes are (usually) single-threaded
— Single Program Multiple Data (SPMD)

Communicators

• A communicator is communication universe with a set of processes

• Each process within a communicator has a unique rank (0...)

• The full set of started processes belong to MPI COMM WORLD

• Processes within a communicator may communicate using:
I Point-to-point communication
I Collective communication

MPI — Point-to-Point Communication

Operations

• In s: MPI Send(bufps , counts , types , dest, tags , comms)

• In r : MPI Recv(bufpr , countr , typer , source, tagr , commr , statusp)

• Type codes: MPI INT, MPI CHAR, MPI BYTE, . . .

• source and tagr may be wildcards: MPI ANY TAG, MPI ANY SOURCE (∗)
Communication

• If operations match: commr = comms , dest = r ,
source = s or source = ∗,
tagr = tags , or tagr = ∗,

types = typer
• Then: counts elements are copied from bufps to bufpr .

• If counts > countr an error occurs.

• From statusp, the source s, tags , and counts may be retrieved.

MPI — Point-to-Point Semantics

General

• Communication is reliable

• Communication between a given sender and a given receiver is ordered

• No fairness guarantee — starvation may occur

Standard mode

• MPI may buffer the message (or not).

• Both MPI Send and MPI Recv are blocking

• When MPI Send returns, its buffer may be reused

Alternatives

• Other modes: Synchronous, buffered, non-blocking, ...

• Many auxiliary operations, e.g. MPI Probe()

Example: Hello MPI World

int main(void) {

char greeting[MAX_STRING]; /* String storing message */

int comm_sz; /* Number of processes */

int my_rank; /* My process rank */

MPI_Init(NULL, NULL);

MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

...

MPI_Finalize();

}

Example: Hello MPI World

if (my_rank != 0) {

sprintf(greeting, "Greetings from process %d of %d!",

my_rank, comm_sz);

/* Send message to process 0 */

MPI_Send(greeting, strlen(greeting)+1, MPI_CHAR, 0, 0,

MPI_COMM_WORLD);

} else {

printf("Greetings from process %d of %d!\n", my_rank, comm_sz);

for (int q = 1; q < comm_sz; q++) {

/* Receive message from process q */

MPI_Recv(greeting, MAX_STRING, MPI_CHAR, q,

0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("%s\n", greeting);

}

}

Collective Communication

Basis

• Barrier:
...

MPI Barrier(c);
...

...

MPI Barrier(c);
...

...

MPI Barrier(c);
...

...

MPI Barrier(c);
...

• To be called by all in communicator c

Extensions

• Broadcast

• Scattering

• Gathering

• Reduction

Collective Communication — Allgather

Operation

• MPI Allgather(bufps , counts , types , bufpr , countr , typer , comm)

• To be called by all in communicator — senders/receivers

• Only bufpr acts as output (for all)— all others as input

• Must all agree on types = typer , counts = countr , comm

Effect

Collective Communication — Gather + processing = Reduce

Operation

• MPI Reduce(bufps , bufpr , count, type, op, dest, comm)

• To be called by all in communicator — senders and receiver

• Only bufpr acts as output (for dest)— all others as input

• Op codes: MPI SUM, MPI PROD, MPI MAX, MPI MIN, . . .

• Must all agree on type, count, op, dest, comm

Effect

MPI on Hybrid Architectures

• Cluster

• DTU HPC clusters: Eg. 30 nodes with 12+12 cores

Parallel Programming Summary

• Processors are programmed indirectly through threads or OS processes

• May be done through a bag-of-task (thread pool)

• The number of worker threads/processes should match the number of
processors

• Speedup and efficiency are important measures

• There are limits to what can be achieved (Amdahl’s Law)

