Course 02158

Concurrency Paradigms

Hans Henrik Lgvengreen

DTU Compute

Concurrency Paradigms

An overall model for application of concurrency

Goals: Structure, scalability, recognizability

Approaches

Classic: Fixed, dedicated threads interacting through shared components
Message based: Actors, tuple-spaces

Task-based: Asynchronous tasks submitted to thread pool

Fork/join pattern

Asynchronous programming (.NET async)

Reactive programming

Implicit data-parallel model (Java Streams)

Underlying Petri Net jﬁ

Classic Approach

e Fixed number of threads dedicated to particular tasks

Example: Cyclometer

Start10sec

GPS

Receiver

ShowPos

Data

GetDist Show,
NewDeliv Clear
< Start, Stop Print
Buttons

@ Printer >
Beep
Sec
@

Actor Model

The Scala Language

e Multi-paradigm langauge developed at EPFL since 2001

o Lead by Martin Odersky (Java compiler, Java generics)

e Predecessors: Pizza, Funnel

e Open source, active community

e Famous industrial application: Twitter distribution engine.
Aims

o Expressive, expandable langaguage (contrast to. eg. Java, C#)
e Consise, flexible syntax

e Production quality (static typing, interoperability, JVM, .NET?)
e Simple support for concurrency

Recent adoption

o Basis for the chisel hardware description languge (for FPGA programming)

Scala Example: Resource Allocator

e class TypedAllocator[T|(pool : Seq[T]) extends Actor{

trait AllocatorReq
case class Acquire() extends AllocatorReq
case class Release(r : T) extends AllocatorReq

val free =new ListBuffer|T]

def act() = {
free + + = pool
loop {
receive {
case Acquire() if !free.isEmpty => reply(free.remove(0))
case Release(r) => free+ = r

}
}
}
}

Scala Example: Resource Allocator — usage

e Interface wrappers:

def acquire() : T = (this !? Acquire()).asInstance0f[T]
def release(r : T) = this ! Release(r)

e class Client(manager : TypedAllocator[Res|) extends Actor{

def act() = {
valres = manager.acquire()
res.use()
manager.release(res)

}
}

¢ val manager = newallocator.TypedAllocator|Res](resseq)
manager.start

for (i <— 1 to 5) {new Client(manager).start}

The Tuple Space Model

Take
./\
Put °
.f\. \\\
Rgad
Rl
e Most known tuple space implementation: Linda

Synchronous execution

Event-driven Systems

EQ Main , : 0S

Y

read(file)

Y

Latency

4 €

EYYYV\ 4 AV e i AMAA ..
yyvy yyvy

Asynchronous call

Multi-threading

e |dea: Create a new thread per asynchronous call

e Works ok for smaller number of threads, but does not scale well

Task-based Approach

o Task: Well-defined, terminating, (non-trivial) sub-computation

e Executed by a pool of threads:

. Thread

4

\ Thread

 Thread

’

e Many names: Bag-of-tasks, supervisor-worker, . ..

Graphics by Ruud van der Pas

Task Execution

e A task is represented by a closure — a function with an environment.

Asynchronous call — result handling

Fixed return path — asynchronous 1/0

| EQ Main oS
: €1 R é1 ‘
E] ' readAsync(file)
E ez > e2 =
: - data
: data g
Call-backs

async f(a, cb) :

e Concurrency issues remain

Call-backs in Node.js

, EQ Main | | 0S
req req

C 3 f(ch)

, ! % g(ch)

, : i $ readAsync(file)

' S e 3 -

: data

I

data b =
chy:
b1: e 4
> g cbl(rl) :
Futures
A

AAAAAAAAAAAAAAAAAAAAAAAA, . .
VVVVV‘ VVVVVVV‘VVVVVVVVVV

e A future represents a value to be

e May be polled or awaited (get, join, await, ...)

Tasks as Futures

>

AAAAAAAAAAAAAAAAAAAAAAAA, . .
VVVVV‘ VVVVVVV‘VVVVVVVVVV

- AW = ==

e Tasks often provide a future interface

Thread Pool Caveats

Sizing

e Number of threads should match number of processors
e Tasks should not bee too large

e Tasks should not be too small

e Rule of thumb: 100-10000 basic operations

Scheduling

e No particular number of threads should be asssumed

e No particular ordering of task should be assumed

e Any two submitted task should be considered concurrent
Synchronization

e Tasks should not use blocking system calls (synchronous 1/0)
e Task may use synchronized for small critical sections

o Tasks should not do conditional synchronization (wait)

General Fork/Join Pattern

e SolvePar(x)
if simple(x) then
return solve(x)
else
(x1,x2) = split(x)
parallel
r1 = SolvePar(x1)
r2 = SolvePar(x2)
return reduce(rl, r2)

Recursive Fork/Join using ThreadPool

e |et pool be a given thread pool

e V SolvePar(T x) {
if simple(x) {
return solve(x);
} else {
Future<V> r1l = pool.submit(x.left());
Future<V> r2 = pool.submit(x.righ());

vl = rl.getQ;
v2 = r2.get();
return reduce(vl, v2);
}
}

e Will require a thread for each task! Why?

Fork/Join Pool

e ThreadPoolExecutor cannot handle task dependencies well
e Special ForkJoinPool allows threads to work while waiting for results

e Queues tasks with thread affinity and work-stealing
ForkJoinTask

Specialized tasks with operations fork() and join()

fork() causes task to be submitted to queue for current thread

join() allows thread to execute other tasks from queue while waiting

Subclass RecursiveTask defines computation in compute ()
ForkJoinPool

e Default instance: ForkJoinPool.commonPool ()

Example: Fibonacci

® class Fibonacci extends RecursiveTask<Integer> {
final int n;
Fibonacci(int n) { this.n = n; }
Integer compute() {
if (n<=1)
return n;
Fibonacci f1
f1.fork();
Fibonacci f2 new Fibonacci(n - 2);
return £2.compute() + f1.join();

new Fibonacci(n - 1);

® Fibonacci fibtask = new Fibonacci(50);
int £ib0f50 = ForkJoinPool.commonPool() .invoke(fibtask) ;

Example: Array summation |

® public class Sum extends RecursiveTask<Long> {
static final int SEQUENTIAL_THRESHOLD = 5000;

int low, high;
int[] array;

Sum(int[] arr, int lo, int hi) {
array = arr; low = lo; high = hi;

}
protected Long compute() {...}
static long sumArray(int[] array) {

RecursiveTask task = new Sum(array,0,array.length);
return ForkJoinPool.commonPool() .invoke (task) ;

Example: Array summation Il

] protected Long compute() {

if (high - low <= SEQUENTIAL_THRESHOLD) {
long sum = 0;
for(int i=low; i < high; ++i)

sum += arrayl[i];

return sum;

} else {
int mid = low + (high - low) / 2;
Sum left = new Sum(array, low, mid);
Sum right = new Sum(array, mid, high);
left.fork();
long rightAns = right.compute();
long leftAns = left.join(Q);
return leftAns + rightAns;

Example: Array summation Il

right = new Sum(...)
left.fork()

compute () :
left = new Sum(...)
right = new Sum(...)
left.fork()
right.compute ()
left = new Sum(...) left = new Sum(...)

right = new Sum(...)

left.fork()

right.compute ()

right.compute ()

left. join()

left. join()

left. join()

Task Parallel Library in .NET

TPL

o Flexible system-provided thread pool(s)

» Only one thread
» Tasks are executed in FIFO order

Tasks and and futures are built together

Tasks may be combined, e.g. by continuation tasks

Used by the async syntactic framework in C#

Divided into different synchronization contexts (= thread pools)

The GUI event queue is considered a special synchronization context.

Async Example |

e Explicit post to GUI-framework

e private void ButtonClick(object sender, RoutedEventArgs e)

{
SynchronizationContext ctx = SynchronizationContext.Current;
Task.Factory.StartNew(() =>
{
decimal result = CalculateMeaningOfLife();
ctx.Post(state => resultLabel.Text=result.ToString(), null);
s
}

Async Example Il

e Using a continuation task

® private void ButtonClick(object sender, RoutedEventArgs e)
{
Task<decimal> calc = Task.Factory.StartNew<decimal>(
() => CalculateMeaning0fLife());

calc.ContinueWith(
t => resultlLabel.Text = t.Result.ToString(),
TaskScheduler.FromCurrentSynchronizationContext());

Async Example IlI

e Using an asynchronous task

® private Task<decimal> CalculateMeaningOfLifeAsync() {
return Task.Factory.StartNew<decimal>(
() => CalculateMeaning0fLife());

}

private async Task ButtonClick(object sender, RoutedEventArgs e)
{

decimal result = await CalculateMeaningOfLifeAsync();

resultLabel.Text = t.Result.ToString();

Reactive Programming

e Marble diagram

Observable<Integer> obsl

Obs 1 = Observable. from(new Integer[] {3, 6});

Observable<Integer> observable2
= Observable. from(new Integer([] (&8, 1});

Obs 2

-

Merge Observable.merge(obsl, obs2)

r—

filter(i -> 1 < 4)
Filter(<4)

L J

W
(o

Map (+1) .map(1 -> i+1)

,_7
u y

.subscribe(System.out::print);

Java Streams

e Introduced in Java 1.8

e Applies ideas from functional programming and reactive programming

e General way of handling large amounts of data or indefinite streams of events
e Everything is considered a stream of values

e Streams may be composed in various ways

e May use higher order functions

e May work with infinite streams

Parallel Streams
e A stream may be parallelized by applying method parallel ()
o A parallel stream is automatically computed by tasks on the fork/join pool

e Subtle concurrency issues may persist!

Example: Array summation using streams

e Given an array of integers: int [] a;

e Find sum of all even element squares

° IntStream src = a.stream();
IntStream even = src.filter((i) -> i % 2 ==0);
IntStream squares = even.map((i) -> i*i);
int sum = squares.sum();

Example: Array summation using streams

e Given an array of integers: int [] a;

e Find sum of all even element squares

° int sum = a.stream()
filter((i) -> i % 2 ==0)
.map((1) -> ixi)
.sum() ;

Example: Array summation using parallel streams

e Given an array of integers: int [] a;

e Find sum of all even element squares

L int sum = a.stream() .parallel()
filter((i) -> i % 2 ==0)
.map((1) -> i*i)
.sum() ;

Task-based programming summary

e Task-based programming provides fine-grained concurrency
e Separates logic from execution

e Enables scalable programs

e Concurrency issues remain — but may be less identifiable!
e Appears in many languages

e May be disguised as async/await syntax

e Thread skills may still be required

e Some new langauges have concealed underlying threads:

» Go: Only lightweight goroutines
» Kotlin: Only lightweight coroutines
» Java: New lightweight virtual threads (Java 19, Aug 2022) [Loom]

e Might eventually be replaced by system-controlled parallelization

