
Course 02158

Message Passing

Hans Henrik Løvengreen

DTU Compute

Shared-Memory Systems — Multiprocessors

• Architecture

Interconnect

CPU CPU CPU CPU

Memory

• Supports shared state

Distributed Memory Systems

• Architecture

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Interconnect

• Calls for message passsing — no race conditions!

• But which kind?

Message Passing

• Abstract notions representing physical communication possibilities

• Many different names: Message queues, pipes, mailboxes, . . .

Primitives

• send msg to dest receive msg [from source]

Aspects

• Direct or indirect addressing

• Synchronization (buffering)

• Message ordering

• Reliability

• Blocking of operations

• Selective communication

• Message types and encodings

Asynchronous Communication

• Uses channels buffering messages with given type

• Notation [Andrews]

var c : chan<T >;

send c(msg) receive c(msg)

Properties

• Channels are typed

• No message loss

• Ordering is preserved (FIFO)

• The send operation never blocks

• The receive operation blocks on an empty channel

• There may be both several senders and several receivers

Pipelining: Example — line assembly

Char to Line

input output

Parallel Merge Sort

Parallel Merge Sort

Client/Server Paradigm

Client/Server — one operation

Client/Server — multiple operations

Client/Server — multiple operations

Resource Allocator: Monitor

Resource Allocator: Types and Client

Resource Allocator: Server

Exchanging Values

Problem

• A number of processes P0,P1, . . . ,Pn−1 have each found a value vi

• All processes must learn the maximum and minimum of the values

Patterns

Exchanging Values – centralized

Exchanging Values – symmetric

Exchanging Values – ring I

Exchanging Value – ring II

Communication Sequential Processes (CSP)

• Language proposal by C.A.R. Hoare 1978

Idea

• A simple imperative langauge based on
Dijkstra’s Guarded Commands

• Plus a few simple concepts for concurrent programming
I No shared variables
I Synchronous communication
I Selection

Impact

• Further eveloped into Theoretical CSP notation

• Realized in the Occam language

• Seminal for many theories of concurrency, esp. process algebras

• Inspiration for concurrency in Go

CSP: Basic Constructs

Dijkstra’s Guarded Commands

• if b1 → S1 [] b2 → S2 [] . . . [] bn → Sn fi

Synchronous Communication

• process A
...

Output B ! e
...

process B
...

A ? x Input
...

• A process has reached an output (!) operation

• Another process has reached an input (?) operation

• They name each other in the operations

• The output expression e matches the type of the input variable x

• No buffering needed!

CSP: Communication — Petri Net

x := e

A : B :

(B!e) (A?x)

CSP: Sieve of Erathostenes

Sieve0 Sieve1 Sieve2 Sieve3 Sieve4

• process Sieve0

var p : integer := 2;

for i in 3..n by 2 do Sieve1 ! i;

• process Sieve[i in 1..L]

var p, next : integer;

Sievei−1 ? p;

do true →
Sievei−1 ? next;

if (next mod p) 6= 0 → Sievei+1 ! next

[] (next mod p) = 0 → skip
fi

od

CSP: One element buffer

West Copy East

c

• process Copy

var c : char;

do true →
West ? c;

East ! c;

od

CSP: Selection

Selective Communication

process A
...

C ! e1

...

process B
...

C ! e2

...

process C
...

if A ? x → S1

[] B ? y → S2

fi
...

CSP: Selection — Petri Net

A : C : B :

S2

B?yC !e1 A?x C !e2

S1

CSP: Two element buffer

West Copy East

c1 c2

• process Copy

var c1, c2 : char;

West ? c1;

do West ? c2 → c1; c1 := c2

[] East ! c1 → West ? c1
od

CSP: Selection

Selective Communication

process A
...

C ! e1

...

process B
...

C ! e2

...

process C
...

if b1; A ? x → S1

[] b2; B ? y → S2

fi
...

CSP: N element buffer

West Copy East

buf

N

• process Copy

var buf[N] : char;

in, out, count : integer := 0;

do count < N; West ? buf[in] →
count := count+ 1; in := (in+ 1) mod N

[] count > 0; East ! buf[out] →
count := count− 1; out := (out+ 1) mod N

od

CSP: Resource Allocator

Clienti Allocator
request(i)

reply(rid)

release(rid)

• Given a type of resource identifiers: ResID

• process Client[i in 1..n]

var rid : ResID;
...

Allocator ! request(i);

Allocator ? reply(rid);

Use resource rid

Allocator ! release(rid);
...

process Allocator

var units : Set< ResID > := . . . ;

rid : ResID;

do units.size() > 0;

Client[∗] ? request(i) →
rid := units.remove();

Client[i] ! reply(rid)

[] Client[∗] ? release(id) →
units.insert(id)

od

CSP: Resource Allocator (alt.)

Clienti Allocator
acquire(rid)

release(rid)

• Given a type of resource identifiers: ResID

• process Client[i in 1..n]

var rid : ResID;
...

Allocator ? acquire(rid);

Use resource rid

Allocator ! release(rid);
...

process Allocator

var units : Set< ResID > := . . . ;

do units.size() > 0;

Client[∗] ! acquire(units.next()) →
units.remove();

[] Client[∗] ? release(id) →
units.insert(id)

od

Theoretical CSP

• A formal notation for desribing processes (process algebra) based on CSP

Syntax

• Process expressions P ::= stop | a→ P | P [] Q | P || Q . . .

• Example: p
∆
= a→ (b → p [] c → stop)

Semantics

• Basic trasistion: P
a−→ Q

• Axioms, e.g. (a→ P)
a−→ P

• Inference rules, e.g.

P
a−→ P ′

P [] Q
a−→ P ′

P
a−→ P ′ Q

a−→ Q ′

P || Q
a−→ P ′ || Q ′

• Forms the basis for defining process equivalence, refinement etc.

Occam

• Programming language developed in the 80’ies by the Inmos chip company

• Based directly on the CSP notions (albeit using typed channels). e.g.

PROC Copy (CHAN OF BYTE West, East)

BYTE c:

WHILE TRUE

SEQ

West ? c

East ! c

• Named after Ockham’s Razor

Entia non sunt mulitiplicanda praeter necessitatem

— William of Ockham (1287–1347)
Transputer

• Specialized processor supporting Occam with four communication links

• Transputers are readily connected in a mesh providing a parallel machine

