
Course 02158

Concurrency in Java

Hans Henrik Løvengreen

DTU Compute

Java Concurrency Means

Explicit threads

• Thread creation and termination

• Thread synchronization

• New in Java 19: Virtual threads

Task-based

• Thread pools: Tasks and futures

• Fork/join pools

Implicit concurrency

• Java Streams

• Reactive programming

Java Thread Creation — basic form

• class P implements Runnable {

void run() {

...

}

}

• In main():

P p = new P();

Thread t = new Thread(p);

t.start();

• other work

• t.join();

Java Thread Creation — with parameter

• class P implements Runnable {

int n;

P(int n) {this.n = n; }

void run() {

... (using n)

}

}

• In main():

P p = new P(117);

Thread t = new Thread(p);

t.start();

• other work

• t.join();

Java Thread Creation — extending Thread

• class P extends Thread{

int n;

P(int n) {this.n = n; }

void run() {

... (using n)

}

}

• In main():

Thread t = new P(117);

t.start();

• other work

• t.join();

Java Thread Creation — with λ

• In main():

Thread t = new Thread(() -> { . . . });

t.start();

• other work

• t.join();

Java Thread States

CREATED

TERMINATED

READY

BLOCKED

ALIVE

new

start

end sleep, join, . . . wakeup, termination, . . .

Java Thread Cancellation

Bad

• The t.stop() method throws a ThreadDeadth exception immediately

• Unsafe — deprecated

Better

• Let thread terminate itself (including release of resources)

• A flag may be used to indicate desired cancellation

• Not observed during blocking operations (e.g. sleep())

Best

• Java provides a system supported cancellation flag per thread (interrupt)

• t.interrupt() sets the flag

• Any blocking operation will throw an InterruptedException when met

• Flag may be interrogated by t.interrupted() (clears flag)

Synchronous execution

A B

f :

f (a)

r

Event-driven Systems

EQ Main

e1
f (e1)

e1

e2

r1

e2
f (e2)

r2

Latency

OS

read(file)

data

Example: Web Server — Sequential

public class SingleThreadWebServer {

public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);

while (true) {

Socket connection = socket.accept();

handleRequest(connection);

}

}

private static void handleRequest(Socket connection) {

// request-handling here

}

}

Asynchronous call

A B

async f (a)

f : Who?

How?
r

Multi-threading

A

async f (a)

f :

t1

async g(b)
g :

t2

• Idea: Create a new thread per asynchronous call

• Works ok for smaller number of threads, but does not scale well

Example: Web Server — Multi-threaded

public class ThreadPerTaskWebServer {

public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);

while (true) {

final Socket connection = socket.accept();

Runnable task = new Runnable() {

public void run() {

handleRequest(connection);

}

};

new Thread(task).start();

}

}

private static void handleRequest(Socket connection) { ... }

}

Task-based Approach

• Task: Well-defined, terminating, (non-trivial) sub-computation

• Executed by a pool of threads:

• Many names: Bag-of-tasks, supervisor-worker, . . .

• Many frameworks: OpenMP, Java fork/join , .NET TPL, . . .

Graphics by Ruud van der Pas

Task Execution

A

a
async f (a)

b
g :

async g(b)

T1

a

•

T2

b

•

• A task is represented by a closure — a function with an environment.

Futures

A

async f (a)

f :Future
poll()

false

get()

set(r)r

• A future represents a value to be

• May be polled or awaited (get, join, await, . . .)

Java Execution control

• Machinery (framework) to deal with common usages of threads

Notions

• A task is a (finite) piece of work represented by an Runnable object

• Tasks can be submitted to executors

• An executor service also allows for monitoring of submitted tasks

• A Callable object is a task that will compute a result

• A Future object represents the status of (cancelable) task

• A thread pool is an executor with:
I A set of threads between a minimum and maximum number
I A keep-alive time for idle threads
I A task queue: None, bounded, unbounded

• If queue full, tasks may be rejected in different ways

Example: Web Server — using an Executor

public class TaskExecutionWebServer {

private static final Executor exec = new SomeExector();

public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);

while (true) {

final Socket connection = socket.accept();

Runnable task = () -> handleRequest(connection);

exec.execute(task);

}

}

private static void handleRequest(Socket connection) { ... }

}

Some Simple Executor Implementations

• public class WithinThreadExecutor implements Executor {

public void execute(Runnable r) {

r.run();

};

}

• public class ThreadPerTaskExecutor implements Executor {

public void execute(Runnable r) {

new Thread(r).start();

};

}

Executor Service

• An Executor with more control of tasks

• Accepts Callable<T> tasks which computes results of type T

• A task submission generates a Future<T> to hold result

• The result of the future is obtained with the get() method

• A task may be cancelled through its future.

Termination Control

• An executor service may be shut down

• If shut down is immediate, pending tasks are returned

• Termination may be awaited

Thread Pools

• An ExecutorService that manages a pool of worker threads

• Many managing strategies.

Standard Types

• newFixedThreadPool(size) Keeps up to size threads ready

• newCachedThreadPool() Keeps threads alive for 60 sec

• newSingleThreadExecutor() Uses a single thread only

• newScheduledThreadPool() Allows tasks to be executed later

ThreadPoolExecutor

• Generic implementation which may be tailored to need

• Task queue parameters: max size, rejection

• Thread pool parameters: max/min size, keep-alive-times

Example: Web Server — using a Thread Pool

public class TaskExecutionWebServer {

private static final int NTHREADS = 100;

private static final Executor exec =

Executors.newFixedThreadPool(NTHREADS);

public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);

while (true) {

final Socket connection = socket.accept();

Runnable task = () -> handleRequest(connection);

exec.submit(task);

}

}

private static void handleRequest(Socket connection) { ... }

}

Example: Work division I

class SumTask implements Callable<Integer> {

int low, high;

int[] array;

Sum(int[] arr, int lo, int hi) {

array = arr; low = lo; high = hi;

}

Integer call() {

int sum = 0;

for (int i = lo; i < hi; i++) { sum += arr[i]; }

return sum;

}

}

Example: Work division II

int sum(int [] arr) {

Executor exec = Executors.newFixedThreadPool(N);

final int chunk = arr.length/N; /* Assume multiplum */

List<SumTask> tasks = new ArrayList<SumTask>();

for (int i=0; i < N; i++) {

tasks.add(new SumTask(arr, chunk*i, chunk*(i+1));

}

List<Future<Integer>> results = exec.invokeAll(tasks);

int sum = 0;

for (Future<Integer> res: results) { sum += res.get(); }

exec. shutdown();

return sum;

}

Thread Pool Caveats

Sizing

• Number of threads should match number of processors

• Tasks should not bee too large

• Tasks should not be too small

• Rule of thumb: 100-10000 basic operations

Scheduling

• No particular number of threads should be asssumed

• No particular ordering of task should be assumed

• Any two submitted task should be considered concurrent

Synchronization

• Tasks should not use blocking system calls (sleep, synchronous I/O)

• Tasks should not do conditional synchronization

• Tasks may use mutual exclusion for small critical sections

