
Course 02158

Introduction

Hans Henrik Løvengreen

DTU Compute

Fall 2024

Concurrent Programming

What for?

• Systems with simultaneous activities

Examples

• Several apps open on a mobile (e.g. media player + gps navigation)

• Multiple users accessing a database

• Several computation parts taking place on a multi-core machine

• Multiple players in a single computer game

Concurrent Programming

Why?

1. Because the real world is parallel:

many users, many devices ⇒ many tasks to do

By reflecting this parallelism within programs we may get:

I better structure
I better response times
I higher performance (on multi-processors)

2. Because we have parallel machine architectures:

network connected computers, multi-processor computers, GPUs ⇒
many hands to keep busy

Programs must be (re-)structured to exploit these architectures

Caveat

• Many pitfalls: Race conditions, deadlocks, starvation

Concurrent Programming

How?

• Language constructs for expressing concurrency

• Mechanisms for synchronization and communication

• Principles of concurrency implementation

• Models for reasoning about concurrent behaviour

• Techniques for proving and testing concurrent programs

• Principles for good design of concurrent systems

Concurrent Programming Aims

After the course you should

• Understand concepts and notions of concurrency.

• Know abstract models of concurrency and principles of verification

• Be well versed in synchronization and communication mechanisms

• Know about underlying implementation principles

• Be aware of concurrency pitfalls and principles for avoiding them

• Know how to test concurrent programs

• Be skilled in writing multi-threaded Java programs

• Know a number of concurrency SW-architectures

• Identify when and how to apply concurrency

Concurrent Programming Prerequisites

Required

• Good command of sequential Java

• Good knowledge af algorithms and data structures

• Discrete mathematics, including predicate logic (∀, ⇒)

Useful

• General knowledge of programming language notions

• Basic knowledge of machine architecture

• Basic knowledge of program representation

• Knowledge of databases

• Knowledge of automata (state machines)

• Knowledge of program semantics

Concurrent Programming Material

• G. Andrews: Foundations of Multithreaded, Parallel, and Distributed
Programming. Textbook

• H.H. Løvengreen: Basic Concurrency Theory. Note.

• Other notes and auxiliary material will be available online:

www.compute.dtu.dk/courses/02158

Course Plan Fall 2024
02158 Activity Plan Fall 2024

Week Day Lecture Ex/Lab

1 Sep 5 Introduction, Petri Nets Ex. class 1

2 Sep 12 Processes, threads & tasks, atomic actions, interleaving model Lab. 1

3 Sep 19 Transition systems, safety and liveness, critical regions, invariants Assignm. 1

4 Sep 26 Temporal logic, fairness, SPIN Ex. class 2

5 Oct 3 Barriers, semaphores Lab. 2

6 Oct 10 Semaphore techniques, monitors Assignm. 2

Fall Vacation

7 Oct 24 Monitor techniques Ex. class 3

8 Oct 31 Testing, deadlocks Lab. 3

9 Nov 7 Message passing Assignm. 3

10 Nov 14 Remote operations Ex. class 4

11 Nov 21 Parallel computing, concurrency paradigms Lab. 4

12 Nov 28 Advanced topics Assignm. 4

13 Dec 5 Ending Ex. class 5

Core topics

Supplementary topics

Lab activities

Concurrent Programming Evaluation Fall 2024

Four Mandatory Assignments (pass/no pass)

• Test ability to apply concepts and notions in practice

• Every third week, set 11
2 weeks in advance

• Carried out in groups of 2-3 students

• Must be documented by brief reports

• Three out of four assignments must be passed for attending exam

• Failed assignments may be resubmitted

Written Exam

• Tests understanding of concepts and notions

• Monday December 9

• 4 hours, only non-electronic aids allowed, i.e. no computers

