Course 02158

Introduction

Hans Henrik Lgvengreen

DTU Compute

Fall 2024

Concurrent Programming

What for?
e Systems with simultaneous activities

Examples

Several apps open on a mobile (e.g. media player + gps navigation)

Multiple users accessing a database

Several computation parts taking place on a multi-core machine

Multiple players in a single computer game

Concurrent Programming

Why?
1. Because the real world is parallel:
many users, many devices = many tasks to do
By reflecting this parallelism within programs we may get:

> better structure
» better response times
> higher performance (on multi-processors)

2. Because we have parallel machine architectures:

network connected computers, multi-processor computers, GPUs
many hands to keep busy

Programs must be (re-)structured to exploit these architectures
Caveat

e Many pitfalls: Race conditions, deadlocks, starvation

=

Concurrent Programming

How?

e language constructs for expressing concurrency

e Mechanisms for synchronization and communication

Principles of concurrency implementation

Models for reasoning about concurrent behaviour

Techniques for proving and testing concurrent programs

Principles for good design of concurrent systems

Concurrent Programming Aims

After the course you should

e Understand concepts and notions of concurrency.

e Know abstract models of concurrency and principles of verification
e Be well versed in synchronization and communication mechanisms
e Know about underlying implementation principles

e Be aware of concurrency pitfalls and principles for avoiding them

e Know how to test concurrent programs

e Be skilled in writing multi-threaded Java programs

e Know a number of concurrency SW-architectures

e |dentify when and how to apply concurrency

Concurrent Programming Prerequisites

Required

e Good command of sequential Java
e Good knowledge af algorithms and data structures

e Discrete mathematics, including predicate logic (V, =)
Useful

e General knowledge of programming language notions

Basic knowledge of machine architecture

Basic knowledge of program representation

Knowledge of databases

Knowledge of automata (state machines)

Knowledge of program semantics

Concurrent Programming Material

e G. Andrews: Foundations of Multithreaded, Parallel and Distributed
Programming. Textbook

e H.H. Lgvengreen: Basic Concurrency Theory. Note.

e Other notes and auxiliary material will be available online:

www . compute.dtu.dk/courses/02158

Course Plan Fall 2024

Week Day
1 Sepb
2 Sep12
3 Sep19
4 Sep 26
5 Oct3
6 Oct10
7 Oct24
8 Oct31
9 Nov7
10 Nov 14
11 Nov 21
12 Nov 28
13 Decb

Core topics

Lecture Ex/Lab
Introduction, Petri Nets Ex. class 1
Processes, threads & tasks, atomic actions, interleaving model Lab. 1
Transition systems, safety and liveness, critical regions, invariants Assignm. 1
Temporal logic, fairness, SPIN Ex. class 2
Barriers, semaphores Lab. 2
Semaphore techniques, monitors Assignm. 2
Fall Vacation

Monitor techniques Ex. class 3
Testing, deadlocks Lab. 3
Message passing Assignm. 3
Remote operations Ex. class 4
Parallel computing, concurrency paradigms Lab. 4
Advanced topics Assignm. 4
Ending Ex. class 5

Supplementary topics
Lab activities

Concurrent Programming Evaluation Fall 2024

Four Mandatory Assignments (pass/no pass)

Test ability to apply concepts and notions in practice

Every third week, set 1% weeks in advance

e Carried out in groups of 2-3 students

e Must be documented by brief reports

e Three out of four assignments must be passed for attending exam
e Failed assignments may be resubmitted

Written Exam

e Tests understanding of concepts and notions

e Monday December 9

e 4 hours, only non-electronic aids allowed, i.e. no computers

