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Deadlock

General Definition

• A set of processes S is deadlocked if each process in S is waiting for an event
that can be caused only by a process in S .

Resource Control

• Resource usage: Request; Use; Release

• Process waits for one or more resources held by others

• Necessary condition for deadlock:

I Mutual exclusion
I Hold-and-wait
I No preemption
I Circular wait

• Control may be local (locks) or global (resource manager, OS)
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Principles of dealing with deadlock

• Deadlock prevention

• Deadlock avoidance

• Deadlock detection and recovery

• Ignore (hope for the best)

Deadlock Prevention

Idea

• To introduce structural restrictions that eliminates deadlock risk

Methods

• Mutual exlusion
Enable simultaneous use, e.g. by spooling [not general]

• Hold-and-wait
Reserve all resources at once [low utilization, risk of starvation]

• No-preemption
Allow preemption, e.g. of CPU and memory [not general]

• Circular wait
Assign ranks to resource types:
A process may only request resources having strictly higher rank than already
allocated ones.



Deadlock Avoidance

Idea

• To use behavioural information to dynamically avoid deadlock.

Prerequisites

• Behavioural information must be available for all processes

• Examples:
I Max resource claim for each resource type
I Resource usage pattern

Method

• A safe state is a state from which there exists a way to terminate all processes
(according to usage information).

• Banker’s Algorithm A resource request is granted only if the resulting state
remains safe.
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Banker’s Algorithm
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Banker’s Algorithm
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Banker’s Algorithm

• After assigning the B-instance to P3:

Allocation Need
A B C A B C

P1 0 0 0 2 2 0
P2 1 0 1 0 0 1
P3 1 1 1 0 1 2
P4 0 1 0 0 0 2

Available Can finish
A B C
0 0 1 P2

1 0 2 P4

1 1 2 P3

1 2 3 P1

2 2 3



Banker’s Algorithm
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• unsafe

Banker’s Algorithm

• After assigning the B-instance to P1:

Allocation Need
A B C A B C

P1 0 1 0 2 1 0
P2 1 0 1 0 0 1
P3 1 0 1 0 2 2
P4 0 1 0 0 0 2

Available Can finish
A B C
0 0 1 P2

1 0 2 P4

1 1 2



Deadlock Detection

Idea

• To detect deadlocks and handle them by automatic recovery

Deadlock Detection

• Maintain global allocation state and perform deadlock detection:
I Regularly
I When some process seems not to make progress

• Assume deadlock if no progress for a while

Recovery

• Select one or more victims based on cost factors

• Kill victim or roll-back to check-point

• Risk of starvation

Deadlock Summary

Principles

• Deadlock prevention

• Deadlock avoidance

• Deadlock detection and recovery

• Ignore (hope for the best)

Practice

• Often ignored — otherwise:

• Local control through locks

• Deadlock prevention qua resource ordering

• Example: Linux kernel locks

Feasible?

• Behavioural information may be used for deadlock avoidance in an ad-hoc way



Locking in the Linux Kernel

Development

• First uni-processor kernels: No need for lock in kernel (interrups disabled)

• First SMP kernels: A single big kernel lock (spin-lock)

• Preemptive kernels (kernel threads may be scheduled): Multiple locks

• Both sleeping locks and spin-locks, generally r/w

Status

• There are now thousands of lock classes

• Lock ordering only sparsely documented — in the code!

• No central documentation of locking order

Tools

• Static analysis of the code is very difficult and incomplete

• The kernel may be instrumented for recording of locking/unlocking (lockdep)

• Potential lock cycles may be detected and reported at runtime on-the-fly

• The locking trace may be analyzed post execution (LockDoc)

Example: Linux ext-2
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Example: Linux ext-2
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Linux: Inode locking order I

Linux 6.0

• In fs/inode.c

/*

* Inode locking rules:

*

* inode->i_lock protects:

* inode->i_state, inode->i_hash, __iget(), inode->i_io_list

* Inode LRU list locks protect:

* inode->i_sb->s_inode_lru, inode->i_lru

* inode->i_sb->s_inode_list_lock protects:

* inode->i_sb->s_inodes, inode->i_sb_list

* bdi->wb.list_lock protects:

* bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list

* inode_hash_lock protects:

* inode_hashtable, inode->i_hash

*/



Linux: Inode locking order II

/*

* Lock ordering:

*

* inode->i_sb->s_inode_list_lock

* inode->i_lock

* Inode LRU list locks

*

* bdi->wb.list_lock

* inode->i_lock

*

* inode_hash_lock

* inode->i_sb->s_inode_list_lock

* inode->i_lock

*

* iunique_lock

* inode_hash_lock

*/


