
Course 02158

Deadlocks

Hans Henrik Løvengreen

DTU Compute

Deadlock

General Definition

• A set of processes S is deadlocked if each process in S is waiting for an event
that can be caused only by a process in S .

Resource Control

• Resource usage: Request; Use; Release

• Process waits for one or more resources held by others

• Necessary condition for deadlock:

I Mutual exclusion
I Hold-and-wait
I No preemption
I Circular wait

• Control may be local (locks) or global (resource manager, OS)

Resource Allocation Graph

R1 R2

R3

R4

P1 P2 P3

P4

Resource Allocation Graph — multiple instances

R1 R2

R3

R4

P1 P2 P3

P4

Principles of dealing with deadlock

• Deadlock prevention

• Deadlock avoidance

• Deadlock detection and recovery

• Ignore (hope for the best)

Deadlock Prevention

Idea

• To introduce structural restrictions that eliminates deadlock risk

Methods

• Mutual exlusion
Enable simultaneous use, e.g. by spooling [not general]

• Hold-and-wait
Reserve all resources at once [low utilization, risk of starvation]

• No-preemption
Allow preemption, e.g. of CPU and memory [not general]

• Circular wait
Assign ranks to resource types:
A process may only request resources having strictly higher rank than already
allocated ones.

Deadlock Avoidance

Idea

• To use behavioural information to dynamically avoid deadlock.

Prerequisites

• Behavioural information must be available for all processes

• Examples:
I Max resource claim for each resource type
I Resource usage pattern

Method

• A safe state is a state from which there exists a way to terminate all processes
(according to usage information).

• Banker’s Algorithm A resource request is granted only if the resulting state
remains safe.

Safe/unsafe States

A

B

B

A

Banker’s Algorithm

A B

C

P1

P2

P3

P4

?

?

?

Banker’s Algorithm

A B

C

P1

P2

P3

P4

• Unsafe

Banker’s Algorithm

A B

C

P1

P2

P3

P4

• Safe

Banker’s Algorithm

• After assigning the B-instance to P3:

Allocation Need
A B C A B C

P1 0 0 0 2 2 0
P2 1 0 1 0 0 1
P3 1 1 1 0 1 2
P4 0 1 0 0 0 2

Available Can finish
A B C
0 0 1 P2

1 0 2 P4

1 1 2 P3

1 2 3 P1

2 2 3

Banker’s Algorithm

A B

C

P1

P2

P3

P4

• unsafe

Banker’s Algorithm

• After assigning the B-instance to P1:

Allocation Need
A B C A B C

P1 0 1 0 2 1 0
P2 1 0 1 0 0 1
P3 1 0 1 0 2 2
P4 0 1 0 0 0 2

Available Can finish
A B C
0 0 1 P2

1 0 2 P4

1 1 2

Deadlock Detection

Idea

• To detect deadlocks and handle them by automatic recovery

Deadlock Detection

• Maintain global allocation state and perform deadlock detection:
I Regularly
I When some process seems not to make progress

• Assume deadlock if no progress for a while

Recovery

• Select one or more victims based on cost factors

• Kill victim or roll-back to check-point

• Risk of starvation

Deadlock Summary

Principles

• Deadlock prevention

• Deadlock avoidance

• Deadlock detection and recovery

• Ignore (hope for the best)

Practice

• Often ignored — otherwise:

• Local control through locks

• Deadlock prevention qua resource ordering

• Example: Linux kernel locks

Feasible?

• Behavioural information may be used for deadlock avoidance in an ad-hoc way

Locking in the Linux Kernel

Development

• First uni-processor kernels: No need for lock in kernel (interrups disabled)

• First SMP kernels: A single big kernel lock (spin-lock)

• Preemptive kernels (kernel threads may be scheduled): Multiple locks

• Both sleeping locks and spin-locks, generally r/w

Status

• There are now thousands of lock classes

• Lock ordering only sparsely documented — in the code!

• No central documentation of locking order

Tools

• Static analysis of the code is very difficult and incomplete

• The kernel may be instrumented for recording of locking/unlocking (lockdep)

• Potential lock cycles may be detected and reported at runtime on-the-fly

• The locking trace may be analyzed post execution (LockDoc)

Example: Linux ext-2

Mode

i-node

Link count

Uid

Gid

File size

Times

Addresses of
first 10

disk blocks

Single indirect

Double indirect

Triple indirect

Parent’s
file

descriptor
table

Child’s
file

descriptor
table

Unrelated
process

file
descriptor

table

Open file
description

File position
R/W

Pointer to i-node

File position
R/W

Pointer to i-node

Pointers to
disk blocks

Triple
indirect
block Double

indirect
block

Single
indirect
block

‘

Boot
block

Super
block

I nodes Data blocks

Example: Linux ext-2

Rear (MRU)Hash table Front (LRU)

Linux: Inode locking order I

Linux 6.0

• In fs/inode.c

/*

* Inode locking rules:

*

* inode->i_lock protects:

* inode->i_state, inode->i_hash, __iget(), inode->i_io_list

* Inode LRU list locks protect:

* inode->i_sb->s_inode_lru, inode->i_lru

* inode->i_sb->s_inode_list_lock protects:

* inode->i_sb->s_inodes, inode->i_sb_list

* bdi->wb.list_lock protects:

* bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list

* inode_hash_lock protects:

* inode_hashtable, inode->i_hash

*/

Linux: Inode locking order II

/*

* Lock ordering:

*

* inode->i_sb->s_inode_list_lock

* inode->i_lock

* Inode LRU list locks

*

* bdi->wb.list_lock

* inode->i_lock

*

* inode_hash_lock

* inode->i_sb->s_inode_list_lock

* inode->i_lock

*

* iunique_lock

* inode_hash_lock

*/

