Course 02158

Deadlocks

Hans Henrik Lgvengreen

DTU Compute

Deadlock

General Definition

e A set of processes S is deadlocked if each process in S is waiting for an event
that can be caused only by a process in S.

Resource Control

e Resource usage: Request; Use; Release
e Process waits for one or more resources held by others
e Necessary condition for deadlock:

Mutual exclusion
Hold-and-wait
No preemption
Circular wait

vV v. vy

e Control may be local (locks) or global (resource manager, OS)

Resource Allocation Graph

Ry R>

Resource Allocation Graph — multiple instances

Rl RZ

/

3

Principles of dealing with deadlock

Deadlock prevention

Deadlock avoidance

Deadlock detection and recovery

Ignore (hope for the best)

Deadlock Prevention

Idea
e To introduce structural restrictions that eliminates deadlock risk

Methods

e Mutual exlusion
Enable simultaneous use, e.g. by spooling [not general]

e Hold-and-wait
Reserve all resources at once [low utilization, risk of starvation]
e No-preemption
Allow preemption, e.g. of CPU and memory [not general]
e Circular wait
Assign ranks to resource types:
A process may only request resources having strictly higher rank than already
allocated ones.

Deadlock Avoidance

Idea

e To use behavioural information to dynamically avoid deadlock.
Prerequisites

e Behavioural information must be available for all processes

e Examples:
» Max resource claim for each resource type
» Resource usage pattern

Method
e A safe state is a state from which there exists a way to terminate all processes
(according to usage information).

e Banker’s Algorithm A resource request is granted only if the resulting state
remains safe.

Safe/unsafe States

Banker’s Algorithm

Banker’s Algorithm

e Unsafe

Banker’s Algorithm

C
o Safe \\“~—->\0 ° \. <———"/
Banker’s Algorithm
e After assigning the B-instance to Pjs:
Allocation Need Available Can finish
A B C|A B C A B C
PL 10O O 0] 2 2 0 0 0 1 P,
P11 0 1]0 0 1 1 0 2 P,
P11 1 10 1 2 1 1 2 Ps
P, 0 1 0|0 0 2 1 2 3 P;
2 2 3

Banker’s Algorithm

e unsafe

Banker’s Algorithm

e After assigning the B-instance to P;:

Allocation Need Available Can finish
A B C|A B C A B C
P, 0 1 0|2 1 O 0O 0 1 P,
P11 0 1]0 0 1 1 0 2 P,
P11 0 1|10 2 2 1 1 2
P,10 1 0}0 0 2

Deadlock Detection

Idea
e To detect deadlocks and handle them by automatic recovery
Deadlock Detection

e Maintain global allocation state and perform deadlock detection:

> Regularly
» When some process seems not to make progress

e Assume deadlock if no progress for a while
Recovery

e Select one or more victims based on cost factors
e Kill victim or roll-back to check-point

e Risk of starvation

Deadlock Summary

Principles

Deadlock prevention

Deadlock avoidance

Deadlock detection and recovery

Ignore (hope for the best)

Practice

Often ignored — otherwise:

Local control through locks

Deadlock prevention qua resource ordering

e Example: Linux kernel locks
Feasible?

e Behavioural information may be used for deadlock avoidance in an ad-hoc way

Locking in the Linux Kernel

Development

o First uni-processor kernels: No need for lock in kernel (interrups disabled)
e First SMP kernels: A single big kernel lock (spin-lock)

e Preemptive kernels (kernel threads may be scheduled): Multiple locks

e Both sleeping locks and spin-locks, generally r/w

Status

e There are now thousands of lock classes
e Lock ordering only sparsely documented — in the code!

e No central documentation of locking order

Tools

e Static analysis of the code is very difficult and incomplete
e The kernel may be instrumented for recording of locking/unlocking (lockdep)
e Potential lock cycles may be detected and reported at runtime on-the-fly

® The locking trace may be analyzed post execution (LockDoc)

Example: Linux ext-2

Open file
description i-node
Parent's File position
file / g/w / Mode
descriptor Pointer to i-node Link count
table - . i
File position Uid
R/W :
S Gid
Child's Pointer to i-node I
file File size
descriptor
table A L Times
Unrelated Adc:'ressi%s of Pointers to
process’ . irst disk blocks
file disk blocks
descriptor Single indirect —
table .
Double indirect —>
Triple indirect
Boot Super >§\§<§ :

block block Triple
/ | nodes Data blocks A
2 indirect / %(
block Double /
2 indirect Simal
block ~°'M9'€
indirect

block

Example: Linux ext-2

Hash table Front (LRU) Rear (MRU)

Linux: Inode locking order |

Linux 6.0

e |In fs/inode.c

\
*

Inode locking rules:

inode—>%i_lock protects:

inode->i_state, inode->i_hash, __iget(), inode->i_to_list
Inode LRU list locks protect:

inode—->1_sb->s_tnode_1lru, tnode—->%_1lru
tnode->1_sb->s_inode_list_lock protects:
inode—->1_sb->s_inodes, tnode—->%_sb_list

bdi->wb.list_lock protects:
bdi->wb.b_{dirty,i0,more_i0,dirty_time}, inode->i_to_list
tnode_hash_lock protects:

inode_hashtable, inode->%_hash

¥ ¥ ¥ %X %X %X X ¥ ¥ *x x *

*/

Linux: Inode locking order Il

\
*

Lock ordering:

inode—->1_sb->s_inode_lrst_lock
inode->1_lock
Inode LRU list locks

bdi->wb.list_lock
inode->1_lock

inode_hash_lock
inode->1_sb->s_inode_list_lock
inode->1_lock

tunique_lock
inode_hash_lock

¥ ¥ X X X X X ¥ ¥ ¥ X X X X *

*/

