
A Short Guide to

Virtual Threads in Loom

Authors:

Kasper Solhøj Jørgensen

Tobias van Deurs Lundsgaard

19th of June, 2022



Getting Started with Loom

This note serves as a short guide on how to set up Project Loom on your Windows computer. It will
also mention a few commands to get you started with using virtual threads for your applications.
Note that this guide is made for devices running Windows 10 and 11.

Note: As of August 2022, Java 19 is now an official version, and you may install it directly. Loom
is still in preview though, so you should use the --enable-preview option as described below.

Installation

In this section we shall describe the installation process for getting Project Loom set up on your
Windows machine.

Firstly you must download the zip file of JDK-19 with Project Loom. The file can be found here:
https://jdk.java.net/loom/
You should see something like the image below. Click the highlighted download link.

Once the zip file has been downloaded, extract it to your computer in a location you prefer. A
good option would be the Java folder. My path is C:\Program Files\Java.

Now we need to change a few environment variables, to enable JDK-19 on your computer. Search
for Environment Variables on your Windows search bar. This should get you to the following
window.

1

https://jdk.java.net/loom/


Here we click on Environment Variables at the bottom of the window. Doing so should take
you to the following window:

2



Now we need to add some new system variables. These can be found in the lower list of the image
above. Click the ”New” button and write the variable name JAVA HOME and set variable value
to the path in which you chose to extract JDK-19. It could look like the following:

Now should go back and add a line to the environment variables located above the system vari-
ables. Click ”new” and add the line:
%JAVA HOME%\bin

The environment variables should now look something like the following image. You might have
more or less environment variables.

Once these steps have been completed we can use JDK-19 and our virtual threads.

We shall ensure that Project Loom works by running a test program. The program will be a Hello
World using the following code. Simply copy the code into a file named HelloWorld.java:

3



1 public class HelloWorld implements Runnable {

2 public static void main(String [] args) throws InterruptedException {

3 Thread thread = Thread.startVirtualThread(new HelloWorld ());

4 thread.join();

5 }

6

7 @Override

8 public void run() {

9 System.out.println("Hello World");

10 }

11 }

12

To run the code, open a terminal and navigate to the folder in which you have stored the Hel-
loWorld.java file. To compile the file, use the following command:
javac HelloWorld.java –enable-preview –release 19

Afterwards you can run the program with this command:
java –enable-preview HelloWorld

You should see the words ”Hello World” being printed in your terminal. This is an indication
that the program works and that you have successfully installed the JDK. You are now free to use
virtual threads.

Coding With Virtual Threads

We shall now provide a brief explanation of some of the tools you have available to use when coding
with virtual threads. The most important thing to remember is that virtual threads have been
designed to be very similar to existing thread tools in Java.

Creating and Starting Virtual Threads

Creating a virtual thread to run some code is simple. In the following code we shall see how to
create and start a virtual thread. We shall use a class named RunTask which implements either
callable or runnable.

1 Thread thread = Thread.ofVirtual ().start(new RunTask ());

2

It is also possible to start a virtual thread with a different command which can be seen below.
Which one you use is a simple matter of preference.

1 Thread thread = Thread.startVirtualThread(new RunTask ());

2

It is also possible to create an unstarted thread that you wish to start later.

1 Thread thread = Thread.ofVirtual ().unstarted(new RunTask ());

2

4



When we would like to start the unstarted virtual thread we just use .start()

1 thread.start();

2

Executor

It is also possible to make an ExecutorService for virtual threads. Those familiar with using
ExecutorService thread pools in Java will see that the structure is very familiar.

1 ExecutorService es = Executors.newVirtualThreadPerTaskExecutor ();

2

As the name implies, for every submitted task this ExecutorService will create a virtual thread to
handle it. Submitting a task is as simple as the following:

1 es.submit(new RunTask ());

2

You should now be able to use virtual threads to achieve concurrency in Java. Remember that
the precautions to avoid issues like race conditions must still be upheld when coding with virtual
threads.

Copyright © 2022 by the authors Tobias van Deurs Lundsgaard and Kasper Solhøj Jørgensen

5


