Technical University of Denmark DTU
R ==

e
o—P

A Short Guide to

Virtual Threads in Loom

Authors:

Kasper Solhgj Jorgensen

Tobias van Deurs Lundsgaard

19th of June, 2022

DTU Compute



Getting Started with Loom

This note serves as a short guide on how to set up Project Loom on your Windows computer. It will
also mention a few commands to get you started with using virtual threads for your applications.
Note that this guide is made for devices running Windows 10 and 11.

Note: As of August 2022, Java 19 is now an official version, and you may install it directly. Loom
is still in preview though, so you should use the --enable-preview option as described below.

Installation

In this section we shall describe the installation process for getting Project Loom set up on your
Windows machine.

Firstly you must download the zip file of JDK-19 with Project Loom. The file can be found here:
https://jdk.java.net /loom/
You should see something like the image below. Click the highlighted download link.

Project Loom Early-Access Builds

These builds are intended for developers looking to "kick the tyres" and provide
feedback on using the APl or by sending bug reports.

Warning: This build is based on an incomplete version of JDK 19.

Build 19-loom+5-429 (2022/4/4)

These early-access builds are provided under the GNU General Public License,
version 2, with the Classpath Exception.

Linux/AArch64 tar.gz (sha2s6) 192429496 bytes
Linux/x64 tar.gz (sha256) 193655045
macOS/AArchéd Tar.gz (sha256) 188249612
mac05/x64 L3Oz (sha256) 190335614
Windows/x64 i 192675142

Once the zip file has been downloaded, extract it to your computer in a location you prefer. A
good option would be the Java folder. My path is C:\Program Files\Java.

Now we need to change a few environment variables, to enable JDK-19 on your computer. Search
for Environment Variables on your Windows search bar. This should get you to the following
window.


https://jdk.java.net/loom/

Computer Name

Hardware Advanced System Protection

Remote

You must be logged on as an Administrator to make most of these changes.

Peformance

Visual effects, processor scheduling, memony usage, and virtual memory

Settings...
lzer Profiles
Desktop settings related to your sign-in

Settings...
Startup and Recovery
System startup, system failure, and debugaing information

Settings...

Environment Variables...

QK Cancel

Apply

Here we click on Environment Variables at the bottom of the window. Doing so should take
you to the following window:

User variables for tobia

Variable

Intelli) IDEA
OneDrive
OneDriveConsumer
Path

TEMP

T™P

Value

D:\Intelli) IDEA 2021.3.2\bin;

C:\Users\tobia\OneDrive

C:\Users\tobia\OneDrive
Ch\Users\tobia\AppDatat\Local\Microsoft\WindowsApps; D:\Intelli) 1...
Ch\Users\tobia\AppDatat\Local\Temp
Ch\Users\tobia\AppDatat\Local\Temp

System variables

New... Edit... Delete

Variable

ComSpec

DriverData
MUMBER_OF_PROCESSORS
s

Path

PATHEXT

PROCESSOR ARCHITECTURE

Value

CA\Windows\system32\cmd.exe
CAWindows\System32\Drivers\DriverData

20

Windows_NT

C:\Program Files (x86)\Razer Chroma SDK\bin;C:\Program Files\Raz...
.COM;.EXE; BAT:.CMD;.VBS5; VBE; JS;.JSE; WSF; . WSH;.MSC

AMDB4

New... Edit... Delete

oK Cancel




Now we need to add some new system variables. These can be found in the lower list of the image
above. Click the ”New” button and write the variable name JAVA_HOME and set variable value
to the path in which you chose to extract JDK-19. It could look like the following:

Variable name: JAVA_HOME
Variable value: C:\Program Files\Java'\jdk-19
Browse Directory... Browse File... QK Cancel

Now should go back and add a line to the environment variables located above the system vari-
ables. Click "new” and add the line:
%JAVA_HOME%\ bin

The environment variables should now look something like the following image. You might have
more or less environment variables.

H%USERPROFILEZNAppDatatLocahMicrosoft\WindowsApps Mew
Selntellil IDEAZ:
Ch\Users\tobia\AppData'\Local\GitHubDesktop\bin Edit
Fa)AVA_HOMEZ:\bin
Browse...
Delete
Move Up
Move Down
Edit text...
0K Cancel

Once these steps have been completed we can use JDK-19 and our virtual threads.

We shall ensure that Project Loom works by running a test program. The program will be a Hello
World using the following code. Simply copy the code into a file named HelloWorld.java:



N}

public class HelloWorld implements Runnable {
public static void main(String[] args) throws InterruptedException {
Thread thread = Thread.startVirtualThread (new HelloWorld());
thread. join () ;
}

@0verride

public void run() {
System.out.println("Hello World");

¥

To run the code, open a terminal and navigate to the folder in which you have stored the Hel-
loWorld.java file. To compile the file, use the following command:
javac HelloWorld.java —enable-preview —release 19

Afterwards you can run the program with this command:
java —enable-preview HelloWorld

You should see the words "Hello World” being printed in your terminal. This is an indication

that the program works and that you have successfully installed the JDK. You are now free to use
virtual threads.

Coding With Virtual Threads

We shall now provide a brief explanation of some of the tools you have available to use when coding
with virtual threads. The most important thing to remember is that virtual threads have been
designed to be very similar to existing thread tools in Java.

Creating and Starting Virtual Threads

Creating a virtual thread to run some code is simple. In the following code we shall see how to
create and start a virtual thread. We shall use a class named RunTask which implements either
callable or runnable.

Thread thread = Thread.ofVirtual().start(new RunTask());

It is also possible to start a virtual thread with a different command which can be seen below.
Which one you use is a simple matter of preference.

Thread thread = Thread.startVirtualThread (new RunTask());

It is also possible to create an unstarted thread that you wish to start later.

Thread thread = Thread.ofVirtual().unstarted(new RunTask());



When we would like to start the unstarted virtual thread we just use .start()

thread.start () ;

Executor

It is also possible to make an EzecutorService for virtual threads. Those familiar with using
EzecutorService thread pools in Java will see that the structure is very familiar.

ExecutorService es = Executors.newVirtualThreadPerTaskExecutor () ;
As the name implies, for every submitted task this FzecutorService will create a virtual thread to
handle it. Submitting a task is as simple as the following:

es.submit (new RunTask());
You should now be able to use virtual threads to achieve concurrency in Java. Remember that

the precautions to avoid issues like race conditions must still be upheld when coding with virtual
threads.

Copyright (©) 2022 by the authors Tobias van Deurs Lundsgaard and Kasper Solhgj Jorgensen



