Suggested Solutions for

# Written Exam, December 9, 2024

# **PROBLEM 1**

# Question 1.1

An almost<sup>1</sup> direct translation yields:



The synchronization may be succinctly expressed by:



# Question 1.2

It is seen that B and C run concurrently, but synchronize in each round, i.e.

$$I \stackrel{\Delta}{=} |b - c| \le 1$$

<sup>&</sup>lt;sup>1</sup>The two adjacent V(SA) operations have been coalesced.

### Question 1.3

The above reduced Petri Net may be implemented using synchronous communications:

| <b>process</b> $P_1$ ; | <b>process</b> $P_2$ ; | process $P_3$ ;   |
|------------------------|------------------------|-------------------|
| repeat                 | $\mathbf{repeat}$      | $\mathbf{repeat}$ |
| A;                     | $P_1?();$              | C;                |
| $P_2!();$              | B;                     | $P_2?();$         |
| A;                     | $P_3!()$               | $P_1!()$          |
| $P_3?()$               | forever                | forever           |
| forever                |                        |                   |

# PROBLEM 2

## Question 2.1

- (a) If the computation is split into n = 5 tasks, each task takes  $T_1/5$  where  $T_1$  is the sequential execution time. With k = 3 worker threads, these tasks are executed first three together, and then two together taking  $2 \times T_1/5$  in total. This gives a speedup of  $T_1/(2 \times T_1/5) = 2.5$ .
- (b) To achieve the best possible speedup,  $\mathbf{k} = \mathbf{4}$  worker threads should be allocated and the number of tasks should be a (small) multiple of this, e.g.  $\mathbf{n} = \mathbf{4}$ . This will give a speedup of  $\mathbf{4}$  which is the best achievable, using four processors.

### Question 2.2

(a) A worst-case scenario could be:



where the execution time becomes 12 seconds resulting in a speedup of  $\frac{24}{12} = 2$ .

(b) Using three worker threads, 3 would be the best possible speedup. This may be achieved with the following scenario:



The resulting execution time is 8 seconds yielding a speedup of  $\frac{24}{8} = 3$ .

(c) [The above scenario may be generated by first submitting A, B, and E and then submitting D and C (just) when they should be started.]

submit(A); submit(B); submit(E); sleep(1); submit(D); sleep(2); submit(C)

## **PROBLEM 3**

#### Question 3.1

(a) Transition diagrams:



[Location and action labels not required. Note that  $c_1$  can be considered atomic.]

(b) [Rather than going through the 42 possible interleavings, we observe that the final value of x is determined by either  $a_2$  or  $b_2$ . In the latter case, y may or may not have been set to 2 before being read, giving final values of 1 or 3. Otherwise, the final value set by  $a_2$  depends on whether the value read for x in  $a_1$  has been changed by  $b_2$  or not. If not, x is set to 4. If it has been changed, it will have been read as 1 or 3 cf. the above, giving final values of 5 and 7.]

Analyzing the possible interleavings, it is found that the final value of x may be one of

1, 3, 4, 5, 7

### Question 3.2

(a) P is preserved by  $a_3$  only. [Not by  $a_1$  if x = -1, and not by  $a_2$  if x = 0.]

Q is preserved by  $a_2$  and  $a_3$ . [Not by  $a_1$  as it sets x = 1 while y = 0.]

*R* is preserved by  $a_1$  and  $a_3$ . [Not by  $a_2$  if *x* is negative. By  $a_3$  since the guard ensures that *x* is positive and hence *y* will be so too.]

(b) I holds initially since x = 0.

Checking all atomic actions:

- $a_1$ : If executed, x < 2, so after the increment, x <= 2.
- $a_2$ : Setting x to 0 ensures that I holds.
- $a_3$ : Not potentially dangerous for I, as x is not changed.

Since I holds initially and is preserved by all atomic actions, I is an invariant of the program.

(c) Transition graph:



### (d) Assuming weak fairness

• F and H do not hold. The infinite execution

$$(0,0) \xrightarrow{a_1} (1,0) \xrightarrow{a_2} (0,1) \xrightarrow{a_2} (0,0) \xrightarrow{a_1} \cdots \qquad (*)$$

satisfies weak fairness, but does not satisfy  $x + y \ge 4$  nor y = 2 anywhere.

- G does not hold. Again the execution sequence (\*) satisfies  $\Box(x + y \neq 3)$ , but never reaches y = 3.
- J holds. By inspecting the possible execution paths in the transition graph we observe that any weakly fair execution that meets (2,0) or (2,3) must eventually pass (0,2) with y = 2.

## Assuming strong fairness

• F does not hold. The infinite execution

$$(0,0) \xrightarrow{a_1} (1,0) \xrightarrow{a_3} (1,2) \xrightarrow{a_2} (0,1) \xrightarrow{a_2} (0,0) \xrightarrow{a_1} \cdots$$

satisfies strong fairness since all actions are executed. But x + y never execceds 3.

- *G* holds. If  $\Box(x + y \neq 3)$  it means that the state (1, 2) is never visited any more. This rules out an execution like (\*) as this would enable  $a_3$  infinitely often leading to (1, 2). Therefore any execution for which  $\Box(x + y \neq 3)$  must occationally pass (2, 0) where  $a_3$  is enabled. However, as  $a_3$  is not taken to (1, 2), it must be taken to (2, 3) satisfying y = 3.
- *H* holds. As shown for *G* any execution will infinitely often enable  $a_3$  leading either to (1, 2) or to (2, 3) followed by (0, 2).
- J holds. Follows from weak fairness.

## **PROBLEM 4**

### Question 4.1

(a) The *Kit* component is readily implemented as a monitor:

```
monitor Kit
var s : integer := 0;
Pos : condition;
procedure put(k : integer) {
s := s + k;
if s > 0 then signal(Pos);
}
function take() returns integer {
var r : integer;
while s \le 0 do wait(Pos);
r := s; s := 0;
return r
}
end
```

[Since at most one call of *take* can benefit from a *put*, a single *signal* suffices.]

(b) Calls of *take* should only wait if  $s \leq 0$  unless some other calls have already been woken:

$$I \stackrel{\Delta}{=} waiting(Pos) > 0 \Rightarrow s \le 0 \lor woken(Pos) > 0$$

I holds initially as waiting(Pos) = 0.

In *put*: If s becomes positive while any waiting, one of these will be woken making the right hand side of I true.

In *take*: If a new call or a woken call waits it only does so if  $s \leq 0$  ensuring *I*. If a call does not wait, but leaves the function, it sets s = 0 making *I* hold.

Since I holds initially and is preserved by both operations, I is an invariant of the monitor.

#### Question 4.2

```
process Control;

var s, r : integer := 0;

repeat

in put(k : integer) \rightarrow s := s + k

[] take() and s > 0 \rightarrow r := s; s := 0; return r

ni

forever
```

## Question 4.3

```
object Kit
 var s : integer := 0;
      e : semaphore := 1;
      pos : semaphore := 0;
      dpos : integer := 0
 procedure put(k : integer) {
    P(e);
    s := s + k;
    if s > 0 \land dpos > 0 then { dpos := dpos - 1; V(pos) }
                         else V(e)
  }
 function take() returns integer {
    var r : integer;
    P(e);
    if s \leq 0 then { dpos := dpos + 1; V(e); P(pos) };
    r := s; s := 0;
    V(e);
    return r
  }
end
```

## Question 4.4

(a) Initially Kit.put(-(n-1)) is called.

Synchronization code for each process  $P_i$  (i:1..n):

```
:

Kit.put(1);

Kit.take();

Kit.put(1);

:
```

[In this solution initially a deficit of n-1 tokens is made. Each process contributes one token upon arrival. When n-1 processes have arrived, the sum of the kitty has become 0. Therefore, when the last process arrives, the sum becomes 1 and one of the processes may pass the take() call. This process puts back one token to make the next process pass etc.]

## Question 4,5

(a) Let Kit be initialized by the call Kit.put(n).

Now, the readers and the writer may be synchronized by:

| <b>process</b> $Reader[i : 1n]$ | <b>process</b> Writer |
|---------------------------------|-----------------------|
| ÷                               | •                     |
| Kit.put(Kit.take()-1);          | Kit.put(-(n-1));      |
| reading                         | Kit.take();           |
| Kit.put(1);                     | writing               |
| :                               | Kit.put(n);           |
| ·                               | :                     |

[The value of s is used as a token count starting with n tokens. Each reader aquires one token by taking a positive number and returning all but one. After reading, the token is put back. The writer first claims n - 1 tokens and then waits for the last one itself. Once finished, the writer returns all tokens. Alternatively, before writing, the writer may repeatedly call *take* till all n tokens have been obtained.]

(b) Under the standard assumption of *weak fairness*, it is seen that the value s of *Kit* will repeatedly become positive if used as in (a). However, if only weak fairness is assumed for the *take* operation, neither the readers nor the writer are guaranteed to pass the call of *take* and hence the solution is not fair to any of them.

If strong fairness is assumed for the take operation, a call of take will eventually finish (as the guard will be infinitely often true) and hence the solution will be fair to both the readers and the writer.

# **PROBLEM 5**

### Question 5.1

```
monitor Broadcast
  var message : Msg;
      rem : integer := 0;
                                     // Receivers remaining in ongoing broadcast
      Senders : condition;
      Receivers : condition;
  procedure send(m : Msg) {
    while empty(Receivers) \lor rem > 0 do wait(Senders);
    rem := \min(length(Receivers), Lim);
    message := m;
    signal(Receivers)
  }
  function listen() returns Msg {
    if rem = 0 then signal(Senders);
    wait(Receivers);
    rem := rem - 1;
    if rem > 0 then signal(Receivers)
                else if \neg empty(Receivers) then signal(Senders);
    return message
  }
end
```

# Question 5.2

The new module is called *Multicast*:

```
module Multicast
op send(m : Msg);
op listen() returns Msg;
op set(v : posinteger);
body
process Control;
var K : posinteger := Lim;
repeat
in send(m : Msg) and ?listen \geq K \rightarrow for i in 1..K do
in listen() \rightarrow return m ni
[] set(v : posinteger)
ni
forever
```

end Multicast;