
02158 CONCURRENT PROGRAMMING HHL 02–12–2024

Suggested Solutions for

Written Exam, December 9, 2024

PROBLEM 1

Question 1.1

An almost1 direct translation yields:

A

B

C

2

The synchronization may be succinctly expressed by:

A

A B

C

Question 1.2

It is seen that B and C run concurrently, but synchronize in each round, i.e.

I
∆
= |b − c| ≤ 1

1The two adjacent V(SA) operations have been coalesced.

02158 CONCURRENT PROGRAMMING Page 2

Question 1.3

The above reduced Petri Net may be implemented using synchronous communications:

process P1;
repeat

A;
P2 ! ();
A;
P3 ? ()

forever

process P2;
repeat

P1 ? ();
B ;
P3 ! ()

forever

process P3;
repeat

C ;
P2 ? ();
P1 ! ()

forever

PROBLEM 2

Question 2.1

(a) If the computation is split into n = 5 tasks, each task takes T1/5 where T1 is the sequential
execution time. With k = 3 worker threads, these tasks are executed first three together,
and then two together taking 2×T1/5 in total. This gives a speedup of T1/(2×T1/5) = 2.5.

(b) To achieve the best possible speedup, k = 4 worker threads should be allocated and the
number of tasks should be a (small) multiple of this, e.g. n = 4. This will give a speedup
of 4 which is the best achievable, using four processors.

Question 2.2

(a) A worst-case scenario could be:

t1

t2

t3

A B E

C

D
✲

0 5 10

where the execution time becomes 12 seconds resulting in a speedup of 24

12
= 2.

(b) Using three worker threads, 3 would be the best possible speedup. This may be achieved
with the following scenario:

t1

t2

t3

A D

B C

E
✲

0 5 10

The resulting execution time is 8 seconds yielding a speedup of 24

8
= 3.

(c) [The above scenario may be generated by first submitting A, B , and E and then submitting
D and C (just) when they should be started.]

submit(A); submit(B); submit(E); sleep(1); submit(D); sleep(2); submit(C)

02158 CONCURRENT PROGRAMMING Page 3

PROBLEM 3

Question 3.1

(a) Transition diagrams:

✍✌
✎☞
k0

✍✌
✎☞
k1

✍✌
✎☞
k2

❄

❄
a1: t1 := x

❄
a2: x := t1 + 4

P1:

✍✌
✎☞
l0

✍✌
✎☞
l1

✍✌
✎☞
l2

❄

❄
b1: t2 := y

❄
b2: x := t2 + 1

P2:

✍✌
✎☞
m0

✍✌
✎☞
m1

❄

❄
c1: y := y + 2

P3:

[Location and action labels not required. Note that c1 can be considered atomic.]

(b) [Rather than going through the 42 possible interleavings, we observe that the final value
of x is determined by either a2 or b2. In the latter case, y may or may not have been set
to 2 before being read, giving final values of 1 or 3. Otherwise, the final value set by a2
depends on whether the value read for x in a1 has been changed by b2 or not. If not, x is
set to 4. If it has been changed, it will have been read as 1 or 3 cf. the above, giving final
values of 5 and 7.]

Analyzing the possible interleavings, it is found that the final value of x may be one of

1, 3, 4, 5, 7

Question 3.2

(a) P is preserved by a3 only. [Not by a1 if x = −1, and not by a2 if x = 0.]

Q is preserved by a2 and a3. [Not by a1 as it sets x = 1 while y = 0.]

R is preserved by a1 and a3. [Not by a2 if x is negative. By a3 since the guard ensures
that x is positive and hence y will be so too.]

(b) I holds initially since x = 0.

Checking all atomic actions:

a1: If executed, x < 2, so after the increment, x <= 2.

a2: Setting x to 0 ensures that I holds.

a3: Not potentially dangerous for I , as x is not changed.

Since I holds initially and is preserved by all atomic actions, I is an invariant of the
program.

02158 CONCURRENT PROGRAMMING Page 4

(c) Transition graph:

(0, 0)

(0, 1)

(0, 2)

(1, 0) (2, 0)

(1, 2)

(2, 3)

s✟✟✯
✲
a1

✲
a1

❅
❅

❅■ a2

❅
❅

❅
❅

❅
❅

❅❅■

a2

❄
a2

■
a2

��
��✠

a2

✟✟

a2

❍❍❥

✟✟✟✟✟✟✙

a2

✻
a3

✻

a3
■

a3

■
a3

(d) Assuming weak fairness

• F and H do not hold. The infinite execution

(0, 0)
a1−→ (1, 0)

a2−→ (0, 1)
a2−→ (0, 0)

a1−→ · · · (∗)

satisfies weak fairness, but does not satisfy x + y ≥ 4 nor y = 2 anywhere.

• G does not hold. Again the execution sequence (∗) satifies ✷(x + y 6= 3), but never
reaches y = 3.

• J holds. By inspecting the possible execution paths in the transition graph we
observe that any weakly fair execution that meets (2, 0) or (2, 3) must eventually
pass (0, 2) with y = 2.

Assuming strong fairness

• F does not hold. The infinite execution

(0, 0)
a1−→ (1, 0)

a3−→ (1, 2)
a2−→ (0, 1)

a2−→ (0, 0)
a1−→ · · ·

satisfies strong fairness since all actions are executed. But x + y never execeeds 3.

• G holds. If ✷(x + y 6= 3) it means that the state (1, 2) is never visited any more.
This rules out an exeuction like (∗) as this would enable a3 infinitely often leading to
(1, 2). Therefore any execution for which ✷(x + y 6= 3) must occationally pass (2, 0)
where a3 is enabled. However, as a3 is not taken to (1, 2), it must be taken to (2, 3)
satisfying y = 3.

• H holds. As shown for G any execution will infinitely often enable a3 leading either
to (1, 2) or to (2, 3) followed by (0, 2).

• J holds. Follows from weak fairness.

02158 CONCURRENT PROGRAMMING Page 5

PROBLEM 4

Question 4.1

(a) The Kit component is readily implemented as a monitor:

monitor Kit

var s : integer := 0;
Pos : condition;

procedure put(k : integer) {
s := s + k ;
if s > 0 then signal(Pos);

}

function take() returns integer {
var r : integer ;
while s ≤ 0 do wait(Pos);
r := s; s := 0;
return r

}

end

[Since at most one call of take can benefit from a put , a single signal suffices.]

(b) Calls of take should only wait if s ≤ 0 unless some other calls have already been woken:

I
∆
= waiting(Pos) > 0 ⇒ s ≤ 0 ∨ woken(Pos) > 0

I holds initially as waiting(Pos) = 0.

In put : If s becomes positive while any waiting, one of these will be woken making the
right hand side of I true.

In take: If a new call or a woken call waits it only does so if s ≤ 0 ensuring I . If a call
does not wait, but leaves the function, it sets s = 0 making I hold.

Since I holds initially and is preserved by both operations, I is an invariant of the monitor.

Question 4.2

process Control ;
var s, r : integer := 0;
repeat

in put(k : integer) → s := s + k

[] take() and s > 0 → r := s; s := 0; return r

ni

forever

02158 CONCURRENT PROGRAMMING Page 6

Question 4.3

object Kit

var s : integer := 0;
e : semaphore := 1;
pos : semaphore := 0;
dpos : integer := 0

procedure put(k : integer) {
P(e);
s := s + k ;
if s > 0 ∧ dpos > 0 then { dpos := dpos − 1; V (pos) }

else V (e)
}

function take() returns integer {
var r : integer ;
P(e);
if s ≤ 0 then { dpos := dpos + 1; V (e); P(pos) };
r := s; s := 0;
V (e);
return r

}

end

Question 4.4

(a) Initially Kit .put(−(n − 1)) is called.

Synchronization code for each process Pi (i : 1..n):

...
Kit .put(1);
Kit .take();
Kit .put(1);
...

[In this solution initially a deficit of n − 1 tokens is made. Each proces contributes one
token upon arrival. When n − 1 processes have arrived, the sum of the kitty has become
0. Therefore, when the last process arrives, the sum becomes 1 and one of the processes
may pass the take() call. This process puts back one token to make the next process pass
etc.]

02158 CONCURRENT PROGRAMMING Page 7

Question 4,5

(a) Let Kit be initialized by the call Kit .put(n).

Now, the readers and the writer may be synchronized by:

process Reader [i : 1..n]
...
Kit .put(Kit .take()− 1);

reading
Kit .put(1);
...

process Writer
...
Kit .put(−(n − 1));
Kit .take();

writing
Kit .put(n);
...

[The value of s is used as a token count starting with n tokens. Each reader aquires one
token by taking a positive number and returning all but one. After reading, the token
is put back. The writer first claims n − 1 tokens and then waits for the last one itself.
Once finished, the writer returns all tokens. Alternatively, before writing, the writer may
repeatedly call take till all n tokens have been obtained.]

(b) Under the standard assumption of weak fairness, it is seen that the value s of Kit will
repeatedly become positive if used as in (a). However, if only weak fairness is assumed for
the take operation, neither the readers nor the writer are guaranteed to pass the call of
take and hence the solution is not fair to any of them.

If strong fairness is assumed for the take operation, a call of take will eventually finish (as
the guard will be infinitely often true) and hence the solution will be fair to both the
readers and the writer.

02158 CONCURRENT PROGRAMMING Page 8

PROBLEM 5

Question 5.1

monitor Broadcast

var message : Msg ;
rem : integer := 0; // Receivers remaining in ongoing broadcast
Senders : condition;
Receivers : condition;

procedure send(m : Msg) {
while empty(Receivers) ∨ rem > 0 do wait(Senders);
rem := min(length(Receivers),Lim);
message := m;
signal(Receivers)

}

function listen() returns Msg {
if rem = 0 then signal(Senders);
wait(Receivers);
rem := rem − 1;
if rem > 0 then signal(Receivers)

else if ¬empty(Receivers) then signal(Senders);
return message

}

end

Question 5.2

The new module is called Multicast :

module Multicast

op send(m : Msg);
op listen() returns Msg ;
op set(v : posinteger);

body

process Control ;
var K : posinteger := Lim;
repeat

in send(m : Msg) and ?listen ≥ K → for i in 1..K do

in listen() → return m ni

[] set(v : posinteger) → K := v

ni

forever

end Multicast ;

