
02158 CONCURRENT PROGRAMMING HHL 04–12–2023

Suggested Solutions for

Written Exam, December 6, 2023

PROBLEM 1

Question 1.1

(a) The speedup cannot exceed the number of processors nor worker threads, hence 5 is the
upper limit determined by the number of threads.

(b) If the computation is split into only t = 22 = 4 tasks, allocating four threads may yield
a speedup of 4. To enable a greater speedup, the computation should be split into more
tasks, e.g. t = 23 = 8 tasks, each taking T1/8 time, where T1 the serial execution time.

[If six worker threads were allocated for the thread pool, they will first work on six of the
tasks for T1/8 time units and then two of the threads would work on the remaming two
tasks, again for for T1/8 time units. This would only give a speedup of T1/(2∗(T1/8)) = 4.]

If we assume that the computation takes much longer time than the period over which
scheduling becomes evenly distributed, allocating eight worker threads will make each
thread seem to work at a reduced execution rate. All eigth tasks may now be carried out
at the same time, but at the reduced rate of 6/8. Hence the computation time becomes
T1/8 ∗ (6/8)

−1 corresponding to an expected speedup of 6. This is the best obtainable
on this system.

Question 1.2

(a) The worst scheduling scenario occurs when the long task F is executed as the last one:

t1

t2

t3

t4

B A

C F

D

E
✲

0 5 10

Here, the execution time becomes 10 seconds corresponding to a speedup of 22/10 = 2.2.

(b) The best possible execution time is 7 seconds [due to F] which could occur in a scenario
like:

t1

t2

t3

t4

F

E

D A

C B
✲

0 5 10

where the tasks could have been submitted in reverse alphabetical order: F , E , D , C , B ,
and A. This will give a speedup of 22/7 ≈ 3, 14 [≈ π(!)] > 3.

02158 CONCURRENT PROGRAMMING Page 2

PROBLEM 2

Question 2.1

[A direct translation of the semaphore-based program to a Petri Net is readily made. This
may be reduced to:]

A B C

Question 1.2

Apart from the first A, both A and C must each synchronize with B . This implies
|(a − 1)− c| ≤ 2 equivalent to:

I
∆
= c − 1 ≤ a ≤ c + 3

Question 2.3

[Before B , synchronization with both A and C must be carried out:]

process P1;
repeat

A;
P2 ! ()

forever

process P2;
repeat

if P1 ? () → P3 ? ()
[] P3 ? () → P1 ? ()
fi;
B

forever

process P3;
repeat

P2 ! () :
C

forever

02158 CONCURRENT PROGRAMMING Page 3

PROBLEM 3

Question 3.1

(a) Transition diagrams:

✍✌
✎☞
l0

✍✌
✎☞
l1

✍✌
✎☞
l2

✍✌
✎☞
l3

❄

❄
a1: t := y

❄
a2: x := t + 2

❄
a3: y := 1

P1:

✍✌
✎☞
k0

✍✌
✎☞
k1

✍✌
✎☞
k2

❄

❄
b1: y := 3

❄
b2: x := x + 1

P1:

[Location and action labels not required.]

(b) The final values of (x , y) can be found by going through the 10 possible interleavings. [We
may observe that y is determined by either a3 or b1. In the latter case all of P1 comes
before P2 resulting in (x , y) = (3, 3) Otherwise P1 may either read y before or after it has
been set to 3 and the incrementation of x may be overwritten or not. This leads to the
following combinations:]

(3, 3), (2, 1), (3, 1), (5, 1), (6, 1)

Question 3.2

(a) P is preserved by a2 and a3. By a2 since it increments both x and y by 1 if executed. By
a3 since x becomes y and y becomes 0. Not by a1 since it may take (0, 0) to (1, 2) not
satifying P .

Q is preserved by a2, but not by a1 (same as case as above) and not by a3 e.g. for
(x , y) = (1, 1).

R is preserved by a1 as it cannot decrease y when x ≤ 1. R is also preserved by a2,
incrementing x and y , but not by a3 e.g. for (x , y) = (1, 0).

(b) Transition graph:

(0, 0)

(1, 2)

(2, 0)

(2, 2)

(2, 3)

(3, 0)

(3, 3)

s
❆❆❯ ✁

✁
✁
✁
✁
✁
✁✁✕

a1

✲
a1

�
�
�✒
a2

�
�
�✒
a2

❆
❆
❆
❆
❆
❆
❆❆❯

a3

❄

a3

❄

a3

✛ a3

❇
❇❇

❇
❇
❇
❇
❇
❇
❇
❇❇◆

a3

✆
a3

✝✻✒
a3

02158 CONCURRENT PROGRAMMING Page 4

(c) From the transition graph if is seen that the only reachable states in which y ≥ 2 are
(1, 2), (2, 2), (2, 3), and (3, 3) all satisfying 1 ≤ x ≤ y . Hence I is an invariant of the
program.

(d) Assuming weak fairness

• F holds. From any reachable state, the execution must eventually reach (0, 0), then
(1, 2) and from there either (2, 0), (2, 2), or (2, 3) all satifying x = 2.

• G does not hold. From any of the states satifying x = 2 we may take a3 to (0, 0)
and from there avoid x = 3 e.g. by the cycle

(0, 0)
a1−→ (1, 2)

a3−→ (2, 0)
a3−→ (0, 0)

a1−→ · · · (∗)

• H does not hold. The only reachable states satisfying x + y = 4 and x + y = 6 are
(2, 2) and (3, 3) respectively. However from (2, 2) the execution may again follow the
cycle (∗), never reaching (3,3).

• J does not hold. The execution may follow the cycle (∗) avoiding y = 3 for ever.

Assuming strong fairness

• F holds. By weak fairness.

• G holds. In any execution the state (1, 2) must be passed over and over again and
hence the action a2 must be enabled infinitely often. Due to strong fairness, a2 must
be eventually executed (from some state) leading either directly to (3, 3) or to (2, 3)
from which (3, 0) is reached.

• H does not hold. From state (2,2) the execution may first move to (0,0) by a3 and
from there follow the cycle

(0, 0)
a1−→ (1, 2)

a2−→ (2, 3)
a3−→ (3, 0)

a3−→ (0, 0)
a1−→ · · ·

which satisfies strong fairness for all actions, but avoids (3, 3) for ever.

• J holds. As for G , from any point in any execution a2 must be executed eventually
leading to y = 3.

02158 CONCURRENT PROGRAMMING Page 5

PROBLEM 4

Question 4.1

var s : integer := 0;

pass(k : posinteger) : 〈 s ≥ k → s := s − k 〉;

release(k : posinteger) : 〈 s := s + k 〉;

Question 4.2

(a) Initially: I holds as s = 0.

Consider the following stretches of activity:

In pass: If, upon entering, s < k , the call waits, nothing has changed and I is preserved.
The same applies if the call waits again after being awakened. If the call passes
the while directly or after a wait, s must be at least k and hence decrementing
it by k will no invalidate I .

In release: As k is positive, s will be incremented, preserving I .

As I holds initially and I is preserved by all stretches of activity, I is a monitor invariant.

(b) No waiting call of pass must have request that could be satisfied:

J
∆
= waiting(pass) > 0 ⇒ s < min(paramspass (queue))

(c) If only signal was used, the process awakened could have a request that would exceed
the incremented s while other processes might have lower, satifiable requests. Also, there
could be more than one call of pass that could be satisfied after incrementing s.

(d) If calls of pass(k) wait with rank k , the signalling may be reduced, e.g. by doing a cascade
wakeup as long as the smallest request can be satisfied:

monitor GenSem

var s : integer := 0;
queue : condition;

procedure pass(k : posinteger) {
while s < k do wait(queue, k);
s := s − k

if ¬empty(queue) ∧ s ≥ minrank(queue) then signal(queue)
}

procedure release(k : posinteger) {
s := s + k ;
if ¬empty(queue) ∧ s ≥ minrank(queue) then signal(queue)

}

end

[Making the cascade by just calling signal(queue) at the end of pass and release would also
reduce the signalling, but then a single unnecessary wakeup might occur at the cascade
ending.]

02158 CONCURRENT PROGRAMMING Page 6

Question 4.3

process Control ;
var s : integer := 0;
repeat

in pass(k : posinteger) and s ≥ k → s := s − k

[] release(k : posinteger → s := s + k

ni

forever;

Question 4.4

(a) Initially, GenSem.release(n) should be called.

Readers: GenSem.pass(1);
reading

GeSem.pass(1);

Writers: GenSem.pass(n);
writing

GenSem.release(n);

(b) As there may be active readers at all times such that s < n, writers may be starved.

On the other hand, a sequence of writers may prevent any reader from starting as the order
in which processes reenters the monitor after being woken with signal all is not defined.

Therefore, the solution is neither fair towards readers nor writers.

[If the FCFS version of Question 4.6 below was used, the solution would be fair to both
readers and writers.]

Question 4.5

(a) No initialization code is necessary.

Synchronization code for each process Pi (i : 1..n):

...
GenSem.release(1);
GenSem.pass(n);
GenSem.release(n);
...

[In this solution each process contributes one token. When n tokens are available the
processes may each discover this by grabbing n tokens and putting them back again.]

(b) In order to use the GenSem for another synchronization point, the value of s must be reset
to 0. This cannot done safely until all processes are known to have passed the barrier.
Therefore the solution cannot be used for repeated synchronization.

[A cyclic barrier may be made using three instances of GenSem and reset the various
instances at the right stages.]

02158 CONCURRENT PROGRAMMING Page 7

Question 4.6

[In order to know the demand of the first call of pass a separate condition queue front is
used for that, setting its request in the variable req . Any following calls wait in condition
queue back . The value of req is also used to indicate whether there is a call of pass waiting
in front (req > 0) or whether a call of pass has been woken from back and is on its way to
take over the front (req < 0). If req = 0 there are no waiting calls of pass.]

monitor FCFS GenSem

var s : integer := 0;
req : integer := 0;
front , back : condition;

procedure pass(k : posinteger) {
if req 6= 0 then wait(back);
req := k ;
if s < k then wait(front);
s := s − k

if ¬empty(back) then {req := −1; signal(back) }
else {req := 0 }

}

procedure release(k : posinteger) {
s := s + k ;
if req > 0 ∧ s ≥ req then signal(front)

}

end

Aside

The java.util.concurrent.Semaphore implements such a generalized semaphore. If the
fairness attribute is set at creation time, the semaphore becomes FCFS.

02158 CONCURRENT PROGRAMMING Page 8

PROBLEM 5

[While handling a call of decide the server must hand out the problem to any calls of get
for which the problem is new. Meanwhile any results for this problem must be recorded
until m results have been obtained. Here the approvals/non-approvals are counted in two
variables infavour and against . While no decision is being made, obsolete results must
still be discarded.]

process Control ;
var no : integer := 0;

infavour , against : integer ;
repeat

in decide(d : D) returns boolean →
no := no + 1;
infavour := 0; against := 0;
while infavour + against < m do

in get(prev : integer) returns (D , integer)
and no > prev → return (d ,no)

[] result(ok : boolean, ver : integer) →
if ver = no then

if ok then infavour := infavour + 1;
else against := against + 1

ni;

return infavour ≥ 2 ∗ against

[] result(ok : boolean, ver : integer) → skip

ni

forever;

