
02158 CONCURRENT PROGRAMMING HHL 03–12–2022

Suggested Solutions for

Written Exam, December 7, 2022

PROBLEM 1

Question 1.1

(a) With the serial fraction f = 10% = 0.1 and the number of processors p = 6, the speedup
follows from substitution into Amdahl’s Law:

S =
1

f + (1−f )
p

=
1

0.1 + 0.9
6

=
1

0.25
= 4

(b) Likewise, the overall limit for the speedup is given by Smax =
1
f
= 1

0.1 = 10

Question 1.2

(a) The speedup cannot exceed the number of processors nor worker threads, hence 3 is the
upper limit determined by the number of threads.

(b) With the given execution times, a perfect fit is possible:

t1

t2

t3

A D

B C

E
✲

0 5 10

The resulting execution time is 7 seconds yielding a speedup of 21
7 = 3.

(c) A worst-case scenario could be:

t1

t2

t3

A B

C E

D
✲

0 5 10

where the execution time becomes 11 seconds resulting in a speedup of 21

11
[≈ 1.91].



02158 CONCURRENT PROGRAMMING Page 2

PROBLEM 2

Question 2.1

[From the inequations, it is recognized that A and B must be executed in lock-steps whereas
B and C must alternate, starting with C . These two synchronizations may be combined
as in:]

CA B

[Alternatively the lock-step execution of A and B may be represented by:

A CB

Here, A may fire together with itself, but the invariant is still satisfied.]

Question 2.2

[The locks-step synchronization may be implemented by cross-signalling:]

var SA,SBA,SBC ,SC : semaphore;

SA := 0; SBA := 0; SBC := 0; SC := 0;

process PA;
repeat

A;
V(SBA);
P(SA)

forever

process PB ;
repeat

P(SBC );
B ;
V(SC );
V(SA);
P(SBA)

forever

process PC ;
repeat

C ;
V(SBC );
P(SC )

forever

Question 2.3

[Here the lock-step is readily implemented with synchronous communication:]

process P1;
repeat

A;
P2 ! ()

forever

process P2;
repeat

P3 ? ();
B ;
P3 ! ();
P1 ? ()

forever

process P3;
repeat

C ;
P2 ! ();
P2 ? ()

forever



02158 CONCURRENT PROGRAMMING Page 3

PROBLEM 3

Question 3.1

(a) Transition diagrams:

✍✌
✎☞
k0

✍✌
✎☞
k1

❄

❄
a1: x := y + 1

P1:

✍✌
✎☞
l0

✍✌
✎☞
l1

✍✌
✎☞
l2

❄

❄
b1: t := x + y

❄
b2: y := t + 2

P2:

✍✌
✎☞
m0

✍✌
✎☞
m1

❄

❄
c1: x := 4

P3:

[Location and action labels not required. Note that b1 can be considered atomic.]

(b) [Rather than going through the 12 possible interleavings, we observe that the final value
of x is determined by either a1 or c1. In the latter case, x becomes 4. Otherwise, the
final value set by a1 is based on the value of y . When read, y may or may not have been
changed by b2. If changed by b2 the updated value of y depends on whether x was changed
by c1 before or after b1. This gives us three different combinations to investigate, leading
to the results 1, 3, and 7.]

Analyzing the possible interleavings, it is found that the final value of x may be one of

1, 3, 4, 7

Question 3.2

(a) P is preserved by a1 and a2. By a1 since it increments y . Similarly for a2 with x . Not by
a3 if y is negative.

Q is preserved by a1 and a2. By a1 since it increments y . By a2 since the guard x 6= y

ensures y > x before the execution and hence y ≥ x after increment of x . Not by a3 if y
is positive.

R is preserved by a1 only. The guard prevents a1 from executing. For a2, x may be equal
to y − 1 before the action making them equal after execution. If y = 0, both x and y will
be 0 after the execution of a3.

(b) I holds initially since y = 0.

Checking all atomic actions:

a1: Before the execution, x = y and x < 2, hence y < 2 or equivalently y ≤ 1. In-
crementing y by one therefore cannot violate neither y ≤ 2 nor 0 ≤ y and hence I

holds.

a2: Not a potentially dangerous for I , since y is not changed.

a3: Always after this action, y = 0, i.e. I holds.



02158 CONCURRENT PROGRAMMING Page 4

Since I holds initially and is preserved by all atomic actions, I is an invariant of the
program.

(c) Transition graph:

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 2)

s✁✁✕

✻
a1

✻
a1

✲a2

✲a2

✲a2✛
a3

❅
❅
❅❘

a3
❄
a3

❆
❆
❆
❆
❆
❆
❆❆❯

a3

❄

a3

✒
a3

✆
a3

✝✻

(d) Assuming weak fairness

• F and J do not hold. The infinite execution

(0, 0)
a1−→ (0, 1)

a3−→ (1, 0)
a3−→ (0, 0)

a1−→ · · ·

satisfies weak fairness, but does not satisfy x + y ≥ 2 nor x = 2 ∨ y = 2.

• H holds. By inspecting the possible execution paths in the transition graph we
observe that any execution must repeatedly get back to (x , y) = (0, 0) and from there
by a1 to (0, 1) and then either by a2 to (1, 1) or by a3 to (1, 0).

• G holds. Among the reachable states y = 2 holds only in (1, 2) and (2, 2). From
(1, 2) either a2 leads to (2, 2) or a3 leads to (2, 0). Thus, whenever y = 2, x will be
or become two.

Assuming strong fairness

• G and H hold. Follows from weak fairness.

• F holds. The only way to avoid the states for which x + y ≥ 2 would be to remain
in the infinite loop

(0, 0)
a1−→ (0, 1)

a3−→ (1, 0)
a3−→ (0, 0)

a1−→ · · ·

For this execution, however, a2 is enabled infinitely often and therefore must be taken
leading to either (1, 1) or (2, 0).

• J does not hold. The infinite execution

(0, 0)
a1−→ (0, 1)

a2−→ (1, 1)
a3−→ (1, 0)

a3−→ (0, 0)
a1−→ · · ·

satisfies strong fairness since all actions are executed. But neither x = 2 nor y = 2
occurs.



02158 CONCURRENT PROGRAMMING Page 5

PROBLEM 4

Question 4.1

(a) When the protocol schemes are followed, for each of the variables r , u, and w , the variable
is alternatingly incremented and decremented (starting with incrementation). Since the
variables are initially 0, the invariant H follows.

(b)

I
∆
= u + w ≤ 1 ∧ (r = 0 ∨ w = 0)

(c) If multiple update locks were allowed to be taken, the corresponding upgradeU operations
would have to wait for the other update locks to be released, leading to deadlock.

Question 4.2

(a) monitor Lock

var r , u,w : integer := 0;
OkRd ,OkUp,OkWr : condition;

procedure lockR() {
while w > 0 do wait(OkRd);
r := r + 1

}

procedure unlockR() {
r := r − 1;
if r = 0 then signal(OkWr)

}

procedure lockU () {
while u + w > 0 do wait(OkUp);
u := u + 1

}

procedure upgradeU () {
while r > 0 do wait(OkWr);
u := u − 1; w := w + 1

}

procedure unlockU () {
w := w − 1;
signalAll(OkRd);
signal(OkUp)

}

end

[When writing is done, all waiting readings may be started together with a single update.]



02158 CONCURRENT PROGRAMMING Page 6

(b) [A call of upgradeU () should wait on OkWr only when there are still readings active:]

J
∆
= waiting(OkWr) > 0 ⇒ r > 0

J holds initially, because OkWr is empty. In upgradeU , OkWr is entered only when
r > 0. Whenever r becomes 0, the OkWr queue is signalled and hence will be emptied, as
upgradeU can be called by at most one update operation.

(c) procedure dropU () {
u := u − 1;
signal(OkUp)

}

Question 4.3

(a) The call of lockU () ensures there there are no other potential writings taking place and
the call of upgradeU ensures that there are no readings active. Hence the effect of taking
a write lock is achieved.

(b) Initialization code: for i in 1..n do L.lockR();

Synchronization code for each process Pi [i : 1..n]:

...
L.unlockR();
L.lockU ();
L.upgradeU ();
L.unlockU ();
...

[The last three operations may be seen as taking a write lock and releasing it again. This
may be passed, when all the initial read locks have been released by arrival at the barrier.]

(c) Once all the initial read locks have been released, the write lock sequence may be passed
an arbitrary number of times and hence the above code cannot be used for repeated
synchronization. Also, it would not follow the protocol scheme for readings by calling
unlockR() several times without lockR() in between.

[To use the code for repeated synchronization, the read locks would have to be taken again,
but only after all processes have passed the barrier. This may be done using three stages

each stage being an instance of the above code.]



02158 CONCURRENT PROGRAMMING Page 7

Question 4.4

(a) The specification can be implemented directly by a server process:

process Control ;
var r , u,w : integer := 0;
repeat

in lockR() and w = 0 → r := r + 1
[] unlockR() → r := r − 1
[] lockU () and u + w = 0 → u := u + 1
[] upgradeU () and r = 0 → u := u − 1; w := w + 1
[] unlockU () → w := w − 1
ni

forever

(b) The server can be made fair to updates by blocking for readings when an update lock can
be taken or when an upgrade is pending. To be fair to readings, these may be processed
after each successful update.

process FairControl ;
var r , u,w : integer := 0;
repeat

while w = 0 do

in lockR() and (?lockU = 0 ∨ u > 0) ∧ ?upgradeU = 0 → r := r + 1
[] unlockR() → r := r − 1
[] lockU () and u = 0 → u := u + 1
[] upgradeU () and r = 0 → u := u − 1; w := w + 1
ni;

in unlockU () → w := w − 1 ni;
while ?lockR > 0 do in lockR() → r := r + 1 ni

forever

[Here, the writing phase is handled separately in order to readily clear the readings queue.]

Question 4.5

lockR() : P(SR)

unlockR() : V(SR)

lockU () : P(SU )

upgradeU () : for i in 1..m do P(SR)

unlockU () : for i in 1..m do V(SR)
V(SU )

[The solution is based on a standard semaphore solution for readers and writers, except
that the wait for cease of reading is deferred till the upgrade step.]

Aside: The Boost C++ library provides an upgradable lock like L.



02158 CONCURRENT PROGRAMMING Page 8

PROBLEM 5

Question 5.1

(a) Channel contents: CA : A2 CB : empty CC : empty

(b) Resource allocation graph:

P1

A

B

P3

P2

C

(c) The remaining A instance may be granted to P3 which may then finish releasing a C

instance. Then P1 may finish and release the B instance and finally P2 may finish. Since
all processes can finish, the situation is considered safe.

(d) If the remaining A instance is requested by and granted to P1, then when P3 subsequently
requests an A resource, all processes have pending requests while there are no free resource
instances. Hence the situation is in deadlock.

(e) The following neighbour acquisitions exchanges may be made:

In P1, receive CA(a) and receive CC (c) are exchanged.
In P2, first receive CA(a) and receive CB (b) are exchanged
In P2, then receive CC (c) and receive CB (b) are exchanged

This results in the resources being requested strictly in the order B→C→A by all three
processes. Thereby the system is deadlock free according to the resource ordering principle.

[In the given system, the request ordering of A and C in processes P1 and P2 does not
actually matter if they start requesting B . If B has been acquired, only one of the processes
can request further resources and then there will be enough A and C instances for that
process as well as for P3.]


