
02158 CONCURRENT PROGRAMMING HHL 03–12–2020

Suggested Solutions for

Written Exam, December 9, 2020

PROBLEM 1

Question 1.1

A direct translation is readily made. From this, the following recduced Petri net may be
derived:

A

B D

C

Question 1.2

From the Petri Net it is seen that A and D may be executed concurrently, but are syn-
chronized in each round. Hence:

I
∆
= |a − d | ≤ 1

Question 1.3

The above Petri Net may be implemented as follows:

process P1;
repeat

A;
P2 ! ();
P2 ? ()

forever

process P2;
repeat

P3 ? ();
P1 ? ();
B ;
P4 ! ();
P1 ! ()

forever

process P3;
repeat

C ;
P2 ! ();
P4 ! ();
P4 ? ()

forever

process P4;
repeat

P3 ? ();
D ;
P2 ? ();
P3 ! ()

forever

[Special care must be taken to let D execute after C without waiting for A. Here, this
is achieved by letting P2 synchronize with P3 before synchronizing with P1, but other
schemes are also possible.]

02158 CONCURRENT PROGRAMMING Page 2

PROBLEM 2

Question 2.1

(a) The statement pairs are checked for critical references with respect to each other:

Pair Mutually atomic Rationale

a, b NO Two critical references in both a and b.
a, c NO Both reading and writing of x in a are critical.
a, d YES Writing to y is the only critical reference in d .
b, c YES Only one critical reference in both b and c

b, d NO Two critical references to y in d .
c, d YES No critical references — totally independent.

(b) Going through the six possible interleavings of the two atomic actions, the possible final
values of (x , y) are found to be:

(3, 2), (3, 5), (5, 2)

Question 2.2

(a) I holds initially since y = 0.

All three a-actions are potentially dangerous for I :

a1: After the execution, x = y . Therefore, if x = 0 also y = 0 and I holds.

a2: After this action, y = 0, i.e. I will hold.

a3: This action is executed only if x = 1 and since x is not changed by the action, after
the execution x is still non-zero and hence I holds.

Since I holds initially and is preserved by all atomic actions, I is an invariant of the
program.

(b) Transition diagram:

(0, 0) (1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 2)

s
❆❆❯ �

�
�✒a1

�
�
�✒a1

✁
✁
✁
✁
✁
✁
✁✁✕

a1

✲a1

❄
a2

✛
a2

❆
❆
❆❆
❆
❆
❆❆❯

a2

❄

a2

✆
a2✝✻

✻
a3

✒
a3

✒
a2

(c) Assuming weak fairness

• F does not hold. The only reachable state satisfying y > x is (1, 2). This may be
avoided by the following execution sequence:

(0, 0)
a1−→ (1, 1)

a2−→ (1, 0)
a2−→ (0, 0)

a1−→ · · · (∗)

Since this execution path does not remain at a single state, it satisfies weak fairness.

• G does not hold. The cycle (∗) also avoids x = 2.

• H does hold. Any execution will repeatedly pass through (1, 0) or (2, 0).

02158 CONCURRENT PROGRAMMING Page 3

• J does not hold. The only state satisfying x + y = 4 is (2, 2). The cycle (∗) passes
through (1, 1). but avoids (2, 2).

Assuming strong fairness

• F holds. As (1, 1) is reached infinitely often, a3 is enabled infinitely often and hence
(1, 2) is reached infinitely often.

• G holds. As (1, 2) is reached infinitely often (cf. F), also (2, 0) must be reached
infinitely often satisfying x = 2.

• H holds. By weak fairness.

• J does not hold. The execution cycle

(0, 0)
a1−→ (1, 1)

a3−→ (1, 2)
a2−→ (2, 0)

a2−→ (0, 0)
a1−→ · · · (∗∗)

satisfies strong fairness, and passes through (1, 1) but still escapes (2, 2).

(d) If a3 cannot be considered atomic as a whole, by the default assumption of atomic reads
and writes and assuming that the guard is evaluated from left to right, it will correspond
to

b3: 〈await x = 1 〉; c3: 〈await y > 0 〉; d3: 〈 y := 2 〉

This can be depicted by the transition diagram:

❡

❡

❡

❡

❄
b3: x = 1 →

❄
c3: y > 0 →

❄
d3: y := 2

(e) Given the refinement above, the interleaving

(0, 0)
a1−→ (1, 1)

b3−→ (1, 1)
c3−→ (1, 1)

a2−→ (1, 0)
a2−→ (0, 0)

d3−→ (0, 2)

violates I .

02158 CONCURRENT PROGRAMMING Page 4

PROBLEM 3

Question 3.1

The WG component is readily implemented as a monitor using cascade wakeup:

monitor WG

var count : integer := 0;
nonPos : condition;

procedure addWait(k : integer) {
while count > 0 do wait(nonPos);
count := count + k ;
if count ≤ 0 then signal(nonPos);

}

procedure add(k : integer) {
count := count + k ;
if count ≤ 0 then signal(nonPos);

}

end

Question 3.2

object WG

var count : integer := 0;
nd : integer := 0
e : Semaphore := 1;
d : Semaphore := 0;

procedure addWait(k : integer) {
P(e);
if count > 0 then { nd := nd + 1; V (e); P(d) }
count := count + k ;
if count ≤ 0 ∧ nd > 0 then nd := nd − 1;

V (d)
else V (e)

}

procedure add(k : integer) {
P(e);
count := count + k ;
if count ≤ 0 ∧ nd > 0 then nd := nd − 1;

V (d)
else V (e)

}

end

02158 CONCURRENT PROGRAMMING Page 5

Question 3.3

process Server

var count : integer := 0;

do count ≤ 0; Client [∗] ?AddWait(k) → count := count + k

[] Client [∗] ?Add(k) → count := count + k

od

Question 3.4

The main program may look like:

WG .add(3);
start {SL1; WG .add(−1) };
start {SL2; WG .add(−1) };
start {SL3; WG .add(−1) };
WG .waitAdd(0);

Question 3.5

Synchronization code for each process:

...
WG .waitAdd(1);

critical section
WG .add(−1)
...

[In general WG may be considered a general semaphore initialized to 1 with waitAdd(1)
and add(−1) acting as P and V operations respectively.]

Question 3.6

Let M be an integer constant such that M ≥ (N − 1) and let WG be initialized by the
call WG .add(−M).

Now, the readers and writers may be synchronized by:

process Reader [i : 1..N]
...
WG .waitAdd(1);

reading
WG .add(−1)
...

process Writer
...
WG .add(M);
WG .waitAdd(1);

writing
WG .add(−(M + 1));
...

Initalizing count to−M ensures that all N readers are allowed to run concurrently. The call
WG .add(M) prevents new readers from starting and when all readers are gone, count = 0
and WG .wait(1) may be passed, blocking for readers. The writer may still suffer from
starvation though.

02158 CONCURRENT PROGRAMMING Page 6

PROBLEM 4

Question 4.1

(a) Calls of get should wait only if the most recent problem has been solved. As the latter is
represented by the done variable, this can be expressed by:

I
∆
= waiting(newProblem) > 0 ⇒ done

(b) Initially I holds as newProblem is empty.

In solve: Before entering the wait, done is set to false, but as newProblem is emptied
before the wait, I will hold. After the wait, the invariant is not changed whether
a new wait is made or the function left.

In get : If the newProblem queue is entered this happens only if done is true, satisfying
I . Otherwise the function is left with I unchanged.

In result : Either done is unchanged or set to true. In any case, I is preserved.

As I holds initially and I is preserved by all stretches of activity, I is a monitor invariant.

Question 4.2

To implement the functionality of solve(x , k), the number of problem copies fetched by get

must be constrained. For this, the following changes suffice:

• The variable remaining : integer := 0 is added to the variable declarations.

• The parameter k is added to solve: solve(x : X , k : posinteger)

• In solve, a statement remaining := k ; is inserted anywhere before the while loop.

• The implementation of get is changed to:

function get() returns (X , integer) {
while done ∨ remaining = 0 do wait(newProblem);
remaining := remaining − 1;
return (prob,no)

}

Question 4.3

(a) Suppose one user process calls solve(x1), some worker process gets (x1, 1) and starts working
on it. Now another user process calls solve(x2), overwriting prob. A second worker process
may then obtain (x2, 2) in get , quickly find a solution y2 and call result(y2, 2). This will
wake up the first user process which picks up solution y2 and returns it for problem x1.

(b) The general technique of using a pre-queue can be applied. First, the pre-queue and a flag
must be declared:

var solving : boolean := false;
notInUse : condition;

Using these, the whole body of solve (except the final return) may be wrapped into an
outer critical section:

02158 CONCURRENT PROGRAMMING Page 7

procedure solve(x : X) returns Y

while solving do wait(notInUse);
solving := true;

...
solving := false;
signal(notInUse);
return sol

Question 4.4

In order to stop working on a problem already solved, the worker processes may poll
ParSolve in each algorithm iteration using the current version number and skip the rest of
the algorithm (as well as the result delivery) if the problem is reported as already solved.

The poll operation could be added as

procedure isSolved(ver : integer) returns boolean {
return ver 6= no ∨ done;

}

Question 4.5

(a) process Control ;
var no : integer := 0;

done : boolean;
sol : Y ;

repeat

in solve(x : X) returns Y →
no := no + 1;
done := false;
while ¬done do

in get() returns (X , integer) → return (x ,no)
[] result(y : Y , ver : integer) → if ver = no then { done := true;

sol := y }
ni;

return sol ;
[] result(y : Y , ver : integer) → skip

ni

forever;

(b) As only one call of solve is accepted at a time, the module would work correctly also if
solve was called by several concurrent user processes.

