TECHNICAL UNIVERSITY OF DENMARK

Written examination, December 7, 2022

Course: Concurrent Programming

Aids allowed: All written works of reference

Exam duration: 4 hours

Weighting: PROBLEM 1: approx. 15 %
PROBLEM 2: approx. 15 %
PROBLEM 3: approx. 20 %

Page 1 of 6 pages

Course no. 02158

PROBLEM 4: approx.
PROBLEM 5: approx.

35 %
15 %

PROBLEM 1 (approx. 15 %)

The questions in this problem can be solved independently of each other.

Question 1.1:

For a given computation, 10 % must be executed sequentially while the remaining 90 %
may by be split arbitrarily into independent tasks to be executed in parallel on a machine

with multiple processors (cores).

(a) Determine an upper limit for the speedup which may be obtained by executing the com-
putation on a machine with 6 uniform processors.

(b) Determine an overall upper limit for the speedup which may be obtained by executing the

computation on any multi-processor machine.

Question 1.2:

In a system, computations are carried out by submitting tasks to a thread pool with a
fixed number of worker threads. The ordering of the tasks in the pool’s task queue is not
generally known. It is assumed that there are no other activities in the system and that
overhead from thread pool management and scheduling can be ignored.

In this question, it is assumed that the system is executed on a machine with 4 uniform
processors and that 3 worker threads are allocated for the thread pool.

(a) State the maximal speedup which might be obtained by using this thread pool.

A computation with a serial execution time of 21 seconds can be divided into five independent
tasks with corresponding execution times (in seconds):

A| B

C

D

E

213

4

5

7

A master thread performs the division into tasks, submits them to the thread pool and
awaits their execution. All of these operations are assumed to take negligible processing

time.

(b) Draw a task scheduling scenario in which the maximal speedup is obtained for the com-

putation.

(¢) Draw a worst-case task scheduling scenario and determine the resulting speedup.

Page 2 of 6 pages

PROBLEM 2 (approx. 15 %)

In a system, three operations A, B, and C are to be synchronized. Given that the number of
times the operations have been executed is denoted by a, b, and ¢ respectively, the following
predicate I must be a characteristic invariant of the system:

1>

1 a—1<b<a+l AN b<c<b+1

That an invariant is characteristic means that it precisely describes the reachable states of the
system.

Question 2.1:

Draw a Petri Net in which the three operations A, B, and C are synchronized so that [is
a characteristic invariant for the net. In the net, the operations must appear as transitions.

Question 2.2:

The operations are to be executed by three sequential processes P4, Pp, and P¢:

process Py; process Pp; process Pg;
repeat repeat repeat
A B o
forever forever forever

Show how to use semaphores for synchronizing the three processes so that I becomes a
characteristic invariant of the program.

Question 2.3:

The operations are now instead to be executed by three sequential CSP-processes Py, P,

and Ps:
process Pi; process Ps; process Pj;
repeat repeat repeat
A B C
forever forever forever

Show how the processes may exchange void messages using CSP’s synchronous communi-
cation so that I becomes a characteristic invariant of the program.

Page 3 of 6 pages

PROBLEM 3 (approx. 20 %)

The questions in this problem can be solved independently of each other.

Question 3.1:

A concurrent program is given by:
var z,y : integer := 0;
co (z:=y+1) || y=2+y+2 | z:=4 oc
(a) For each of the three processes, draw a transition diagram showing its atomic actions.

(b) Determine all possible final values of x for the program.

Question 3.2:
Consider the concurrent program:
var z,y : integer := 0;

co
repeat a;: (z = y ANz < 2 — y:= y+ 1) forever

|

repeat ay: (z # y ANz < 2 — z := z+1) forever
|

repeat as: (z := y; y := 0) forever
oc

(a) Determine for each of the following predicates P, (), and R whether it is (in general)
preserved by each of the actions a;, ag, and as:

Vv
o

SO v
e > e
8 < 8
DI AVARE
e o8

(b) Prove inductively that the predicate I 29 <y <2 is an invariant of the program.

(c) Draw the (reachable part of) the transition graph for the program. Only the (z,y) part
of the state has to be shown.

(d) Consider the following temporal logic properties:

F
G

0O (z+y>2) H
Yy=2~x =2 J

O (xz=1)
OC(z=2Vy=2)

> e
> e

Determine for each of F', G, H, and J whether it holds for the program under the assump-
tion of weak fairness. Do the same under the assumption of strong fairness.

Page 4 of 6 pages

PROBLEM 4 (approx. 35 %)

The questions in this problem can be solved independently of each other.

In some systems, there may be many atomic readings of a shared data structure D and a few
atomic updates of the form (D := f(D)) where the computation f takes very long time (say an
image transformation). Using normal read/write locking, the structure D cannot be accessed
from other processes while f is being computed.

For such systems the synchronization component L specified below may be used. An atomic
reading may as usual be implemented by obtaining a read lock using the operation sequence:

L.lockR(); read D; L.unlockR()
whereas an atomic update may be implemented by the operation sequence:
L.lockU(); read D; compute D' = f(D); L.upgradeU(); write D’; L.unlockU ()

Informally, lockU () first obtains an update lock which is like a read lock but with an intent to
write later. The upgradeU () operation converts the lock to a write lock which is finally released
by unlockU (). This allows for concurrent reading during the computation phase.

In the questions below, the operations are assumed to be used according to the protocol schemes
shown above.

object L;
var r,u,w : integer = 0; // locks held
op lockR() : (w=0—r7r:=r+1)
op unlockR() : (r:=r—1);
op lockU() : (u+w =0— u:=u+1)
op upgradeU() : (r =0 > u:=u—1; w:=w+1)
op unlockU() : (w = w—1);

end

Question 4.1:
(a) Assuming that the protocol schemes are followed, give a brief argument that the predicate:

HérEO/\UEO/\wEO

is an invariant of the component.

(b) Define a predicate I which is an invariant of the component and which characterizes the
desired synchronization behaviour of the component.

(c) Explain why update locks (u) must be mutually exclusive.

The problem is continued on the next page

Page 5 of 6 pages

Question 4.2:

(a) Implement L as a monitor. You should avoid unnecessary signalling, but you need not
care for starvation.

(b) State a predicate J which expresses that calls of upgradeU () do not wait unnecessarily and
argue that J is a monitor invariant.

(¢) Show how to add a new operation dropU () to the monitor. This operation is to be used by
updates instead of upgradeU() ... unlockU() if it turns out that writing is not necessary.
Thus, the new operation should merely release the update lock.

Question 4.3:

(a) Explain why the operation sequence L.lockU(); L.upgradeU () may be seen as a normal
write lock operation.

(b) Show how n concurrent processes, Py, Pa,..., P, (n > 2), can use the given component L
to establish a one-time barrier (i.e. a synchronization point, which is to be used only once).
The component may be brought into a desired state by executing some initialization code
before the concurrent processes are started.

(c) Discuss whether your solution proposed for (b) can be used as a normal barrier (i.e. be
used for repeated synchronization among the n processes).

Question 4.4:
The given component L is now to be implemented by a module specified by:

module Lock
op lockR();
op unlockR();
op lockU ();
op upgradeU ();
op unlockU ();
end

(a) Write a server process for the module Lock which services the operations by rendezvous
in such a way that it functions like L. The operations may be served in any feasible order
and the solution does not have to be fair.

(b) Write an alternative server process for the module Lock so that the solution is fair towards
both readings and updates.

[If your solution to (a) already fulfils this requirement, you may just refer to that.]

Question 4.5:

In a system with a maximum of m (m > 1) concurrent processes, the synchronization
properties of the given component L may instead be achieved using two semaphores:

var SR : semaphore := m; SU : semaphore := 1;

Show how to implement the synchronization by providing code for each of the five opera-
tions of L using these semaphores.

Page 6 of 6 pages

PROBLEM 5 (approx. 15 %)

Question 5.1:

In a system there are two instances of a resource type A denoted by resource identifiers
Al and A%, Similarly, there is one instance B! of type B and two instances C' and C2 of
type C. The type of resource identifiers is generally denoted rid. The resources are used
by three processes Py, Po, and Ps.

The resources are controlled via asynchronous channels acting as buffers for the resource
identifiers considering them as messages. Three channels, C4, Cp, and C¢, are initially
loaded with the respective resource identifiers by executing:

chan Cy4, Cp, Co : rid;

send C4(Al); send Ca(A?);
send Cp(B!);
send C¢(C); send C¢(C?);

The three processes may then acquire and release resource instances by respectively re-
ceiving and sending on the various channels. The processes have the following form:

process Pi; process Ps; process Ps;
var a,b,c : rid; var a,b,c : rid; var a,c : Tid;
receive Cp(b); receive Cc¢(c) receive C¢(c¢);
— useb receive Cy(a); — use ¢
receive Cy(a); — receive Cp(b); receive Cy(a);
receive Cc¢(c¢); use a, b and ¢ use a and ¢
use a, b and ¢ send Cy(a); send Cy(a);
send Cy(a); send Cp(b); send C¢(c);
send Cp(b); send Cc(c);
send C¢(c);

At a given moment, the processes have reached the locations indicated with arrows (—).
State the message contents (if any) of the three channels at this moment.

Draw a resource allocation graph corresponding to the situation at the given moment. In
the graph, the expected future resource claims should be indicated by dashed arrows.

Explain why this resource allocation situation would normally be considered safe.
Demonstrate that deadlock may occur from the given situation.

Show with a brief argument how the system can be made generally deadlock free by ex-
changing neighbour acquisitions (possibly several times within the same process).

