
TECHNICAL UNIVERSITY OF DENMARK Page 1 of 6 pages

Written examination, December 7, 2021

Course: Concurrent Programming Course no. 02158

Aids allowed: All written works of reference

Exam duration: 4 hours

Weighting: PROBLEM 1: approx. 15 %
PROBLEM 2: approx. 20 %
PROBLEM 3: approx. 20 %

PROBLEM 4: approx. 30 %
PROBLEM 5: approx. 15 %

PROBLEM 1 (approx. 15 %)

In a system, computations are carried out by submitting tasks to a thread pool with a fixed
number of worker threads which repeatedly execute tasks from the pool’s task queue. The
system is executed on a machine with four uniform processors. The ordering of the tasks in the
queue is not generally known. It is assumed that there are no other activities in the system and
that overhead from thread pool management and scheduling can be ignored.

Question 1.1:

(a) Determine an upper limit for the speedup which may be obtained for a computation if two
worker threads are allocated for the thread pool

(b) Determine an upper limit for the speedup which may be obtained for a computation if six
worker threads are allocated for the thread pool

Question 1.2:

In this question, three worker threads are assumed to be allocated for the thread pool.

A computation with a serial execution time of 15 seconds can be divided into five independent
tasks with corresponding execution times (in seconds).

A 1

B 2

C 3

D 4

E 5

A master thread performs the division into tasks, submits them to the thread pool and
awaits their execution. All of these operations are assumed to take negligible processing
time.

(a) Draw a task scheduling scenario in which the shortest possible execution time is achieved
for the computation. State the execution time and calculate the speedup.

(b) Draw a task scheduling scenario for which the resulting speedup is less than 2.

(c) Assume that the ordering of the task queue is known to be first-in-first-out (FIFO). State
a sequence in which the master thread could submit the tasks to the thread pool in order
to achieve the optimal execution time determined in (a).



Page 2 of 6 pages

PROBLEM 2 (approx. 20 %)

The questions in this problem can be solved independently of each other.

Question 2.1:

A concurrent program is given by:

var x , y : integer := 0;

co x := 2; y := x + 3 ‖ x := x + y + 1 oc

(a) For each of the two processes, draw a transition diagram showing its atomic actions.

(b) Determine all possible final values of x for the program.

Question 2.2:

Let x and y be integer variables. Determine for each of the predicates P , Q , and R whether
it is preserved by each of the actions a, b, and c:

P
∆
= x + y > 0

Q
∆
= x = 0 ∨ y = 0

R
∆
= 0 < x ≤ y

a: 〈 x = y → x := 0 〉

b: 〈 y := 2y 〉

c: 〈 x < 0 → x := x + 1 〉

Question 2.3:

Consider the concurrent program:

var x , y : integer := 0;

co

repeat a1: 〈 x < 3 → y := x ; x := x + 1 〉 forever

‖
repeat a2: 〈 y > 0 → x := 0 〉 forever

‖
repeat a3: 〈 x > 1 → y := 2 〉 forever

oc

(a) Draw the (reachable part of) the transition graph for the program. Since control remains
at the a-actions, only the (x , y) part of the state has to be shown.

(b) Consider the following temporal logic properties:

F
∆
= ✷✸ (x + y = 0)

G
∆
= y = 2 ❀ x = 1

H
∆
= ✷✸ (y = 2)

I
∆
= ✷✸ (x + y = 4)

Determine for each of F , G , H , and I whether the property holds for the program under
the assumption of weak fairness. Do the same under the assumption of strong fairness.



Page 3 of 6 pages

PROBLEM 3 (approx. 20 %)

In a system, a number of operations A1,A2, . . . ,An with corresponding successor operations
B1,B2, . . . ,Bn (n ≥ 2) are to be executed the following way:

(∗) A1,A2, . . . ,An are executed concurrently. When Ai has finished, the corresponding Bi is
executed as soon as also Ai+1 has finished (for i = 1, . . . ,n − 1). When An has finished,
Bn is immediately executed. When all the operations B1,B2, . . . ,Bn have finished, the
execution starts all over again.

Question 3.1:

For a system with n = 3, draw a Petri Net in which the six operations A1, A2, A3, B1,
B2, and B3 are synchronized as described by (∗). In the net, the operations should be
represented by transitions.

Question 3.2:

The operations are to be executed by n sequential processes P1,P2, . . . ,Pn of the form:

process P [i : 1..n];
repeat

Ai ;
Bi

forever

Show how to synchronize these processes using semaphores so that the operations A1, . . . ,An ,
B1, . . . ,Bn become synchronized as described by (∗).

Question 3.3:

The processes P1,P2, . . . ,Pn are now to be synchronized using a monitor Synch with two
procedures doneA and doneB which are called by the processes as shown:

monitor Synch

procedure doneA(i : integer) :
procedure doneB();

end

process P [i : 1..n];
repeat

Ai ;
Synch.doneA(i);
Bi ;
Synch.doneB ()

forever

Implement the monitor in such a way that the operations A1, . . . ,An , B1, . . . ,Bn are
executed as described by (∗).

[Spurious wakeups are assumed not to occur. Efficiency of the monitor is not emphasized.]



Page 4 of 6 pages

PROBLEM 4 (approx. 30 %)

In a candy factory there are a number of candy processes, Pi (i = 1..n), which control the
production of different kinds of candies. Each candy process repeatedly makes a (small) batch
of candies and pours them through a funnel into a bag (together with other kinds of candies).
The packing is controlled by a single packing process, Q , that repeatedly prepares a bag, waits
for different candy processes to fill the bag with a desired number of grammes of candies (at the
minimum), and finally removes the bag.

The packing is to be coordinated by a control component Pack which is used as follows:

process P [i : 1..n];
repeat

make a batch of kind i ;
w := weight of batch;
Pack .start(w);
pour batch through funnel;
Pack .end()

forever

process Q ;
repeat

prepare a bag for g grammes under funnel;
Pack .fill(g);
remove the filled bag from funnel

forever

The following is a monitor implementation of Pack :

monitor Pack ;

var sum, limit , count : integer := 0;
BagReady ,Filled : condition;

procedure start(w : posinteger) {
while sum ≥ limit do wait(BagReady );
sum := sum + w ;
count := count + 1;
if sum < limit then signal(BagReady )

}

procedure end() {
count := count − 1;
if sum ≥ limit and count = 0 then signal(Filled )

}

procedure fill(g : posinteger) {
limit := g ;
sum := 0;
signal(BagReady );
wait(Filled);
limit := 0

}

where posinteger is the type of positive (> 0) integers.

The problem is continued on the next page



Page 5 of 6 pages

Question 4.1:

(a) At some moment (while the monitor is free), the following holds: limit = 500, sum = 215,
count = 3. What can you tell about the system’s processes from these facts?

(b) Give an informal argument that I
∆
= count ≥ 0 is an invariant of the monitor in the given

system.

(c) Define a desired monitor invariant, IQ , expressing that the packing process does not wait
unnecessarily. Argue that IQ is a monitor invariant.

(d) The monitor would not work if spurious wakeups could occur. Describe how to modify the
monitor in order to make it resilient against spurious wakeups.

Question 4.2:

The functioning of the given monitor Pack is now to be implemented by a module with
the following specification:

module Pack

op start(w : posinteger);
op end();
op fill(g : posinteger);

end

Write a server process for the module Pack which serves the operations by rendezvous in
such a way that it controls the packing and candy processes like the given monitor Pack .

Question 4.3:

To achieve better mixing of the candies, the synchronization should be modified so that
all the candy processes needed for filling a bag start to pour simultaneously.

(a) Describe under which conditions such simultaneous pouring should be started. It may be
assumed that eventually there will always be enough candy processes to fill a bag.

(b) Write a new MixPack monitor (with the same interface as the given monitor) which syn-
chronizes the given processes in this way.

(c) Discuss whether the same synchronization of the given processes could be achieved using
a server-based module serving the operations by rendezvous.



Page 6 of 6 pages

PROBLEM 5 (approx. 15 %)

In a system there are eight instances of a single resource type. The instances are used by two
processes P1 and P2 each of which may require up to a maximum number of instances before it
releases them all again. For P1 and P2, the maximums are four and six instances respectively.

Question 5.1:

(a) Assume that P1 and P2 at a given moment have been granted three instances each. De-
termine with a brief argument whether this situation is safe.

(b) Let the number of instances granted to P1 and P2 at a given moment be denoted by r1
and r2 respectively. State a predicate Safe which determines whether the situation given
by r1 and r2 is safe.

It can be assumed that the edge conditions (0 ≤ r1 ≤ 4 ∧ 0 ≤ r2 ≤ 6 ∧ r1 + r2 ≤ 8) are
always satisfied.

The processes P1 and P2 are now assumed to be implemented in CSP. Their use of the resource
instances is to be controlled through communication with a resource administrator process Adm.
The processes acquire and release instances one at a time by synchronous communications of
the form Adm ? acquire() and Adm ! release() respectively. The resource administrator should
only control how many instances may be used by each process, not which particular instances
are to be used.

Question 5.2:

Write a CSP process Adm serving P1 and P2 in such a way that resource instances are
granted according to the principle of the Banker’s Algorithm.


