
TECHNICAL UNIVERSITY OF DENMARK Page 1 of 5 pages

Written examination, December 9, 2020

Course: Concurrent Programming Course no. 02158

Aids allowed: All

Exam duration: 4 hours

Weighting: PROBLEM 1: approx. 15 %
PROBLEM 2: approx. 20 %

PROBLEM 3: approx. 35 %
PROBLEM 4: approx. 30 %

PROBLEM 1 (approx. 15 %)

Three processes PA,PB , and PC execute three operations A, B , and C respectively. Further-
more, PC executes a fourth operation D . The operations are to be synchronized, which is
accomplished by means of semaphores:

var SA,SB ,SC ,SD : semaphore;

SA := 0; SB := 0; SC := 0; SD := 0;

process PA;
repeat

A;
V(SA);
P(SD)

forever

process PB ;
repeat

P(SA);
P(SC);
B ;
V(SB)

forever

process PC ;
repeat

C ;
V(SC);
D ;
P(SB);
V(SD)

forever

Question 1.1:

Draw a Petri Net in which the four operations A, B , C , and D are synchronized in the
same way as in the above program. In the net, the operations should be represented by
transitions.

Question 1.2:

Let the number of times the operations A and D have been executed be denoted by a and
d respectively. Define a predicate I which characterizes the reachable combinations of a
and d in the above program.

Question 1.3:

The operations are now to be executed by four sequential CSP-processes P1, P2, P3, and
P4 respectively:

process P1;
repeat

A
forever

process P2;
repeat

B
forever

process P3;
repeat

C
forever

process P4;
repeat

D
forever

Show how the processes may exchange void messages using CSP’s synchronous commu-
nication so that A, B , C , and D are synchronized in the same way as in the above,
semaphore-based program.

Page 2 of 5 pages

PROBLEM 2 (approx. 20 %)

The questions in this problem can be solved independently of each other.

Question 2.1:

Let x and y be integer variables. Consider the four statements a, b, c, and d :

a: x := x + y + 3
b: y := x + 2
c: x := 1
d : y := y + 1

(a) For each of the six possible selections of two different statements, determine whether the
two statements are mutually atomic.

(b) Determine all possible final values of (x , y), if the two statements a and b are executed
concurrently starting in the state (0, 0).

Question 2.2:

Consider the concurrent program:

var x , y : integer := 0;

co

repeat a1: 〈 x < 2 → x := x + 1; y := x 〉 forever

‖
repeat a2: 〈 x := y ; y := 0 〉 forever

‖
repeat a3: 〈 x = 1 ∧ y > 0 → y := 2 〉 forever

oc

(a) Prove inductively that I
∆
= (x = 0 ⇒ y = 0) is an invariant of the program.

(b) Draw the (reachable part of the) transition graph for the program. Only the (x , y) part of
the state has to be shown.

(c) Consider the following temporal logic properties:

F
∆
= ✷✸ (y > x)

G
∆
= x = 1 ❀ x = 2

H
∆
= ✷✸ (y = 0 ∧ x > 0)

J
∆
= x + y = 2 ❀ x + y = 4

Determine for each of F , G , H , and J whether the property holds for the program under
the assumption of weak fairness. Do the same under the assumption of strong fairness.

(d) Assume that the action a3 cannot be considered atomic as a whole.

Draw a transition diagram representing the refinement of a3 into (conditional) atomic
actions.

(e) Show that I is not an invariant of the refined program.

Page 3 of 5 pages

PROBLEM 3 (approx. 35 %)

The questions in this problem can be solved independently of each other.

In a system, there is a synchronization component called an (extended) work group which may
be seen as a shared object WG with two operations waitAdd and add specified by:

object WG ;

var count : integer := 0;

op waitAdd(k : integer) : 〈 count ≤ 0 → count := count + k 〉;

op add(k : integer) : 〈 count := count + k 〉;

end

Question 3.1:

Implement WG as a monitor.

Question 3.2:

Implement the operations of WG using semaphores for synchronization. The technique of
passing-the-baton should be applied for that.

Question 3.3:

In a CSP program it is desired to synchronize a family of processes, Client [i : 1..N], by
a component behaving like WG . This is to be implemented by a dedicated process called
Server . The Client processes should use the component through communications with the
Server processs on different ports:

waitAdd(k): Server !WaitAdd(k)
add(k): Server !Add(k)

Write the Server process such that it functions like the given WG component as seen from
the Client processes.

Question 3.4:

Assume that processes may be created dynamically by the statement start {SL} which
starts a new process executing the statement list SL concurrently with the initiating pro-
cess.

Now a main process should start three concurrent subprocesses executing statement lists
SL1, SL2, and SL3 respectively and then wait until all three lists have been executed. Show
how to use the given WG component to accomplish this.

Question 3.5:

Show how a group of processes may use the given WG component to establish a critical
region.

Question 3.6:

Show how a system of N (N ≥ 1) reader processes and a single writer process may use
the given WG component for reader/writer synchronization. You may assume an initial
call of add to be made in order to bring the component into a desired state.

Page 4 of 5 pages

PROBLEM 4 (approx. 30 %)

The questions in this problem can be solved independently of each other.

A given type X of problems have solutions of type Y given by a function Solve : X → Y .
The solution for a given instance of the problem can be calculated by a number of different
sequential algorithms having different execution times. However, it cannot be determined in
advance, which algorithm is the best one for a given problem instance.

In a system with plenty of processors, these can be used to run several different algorithms in
parallel and then use the first solution available. Below, this idea is implemented by a coordinator
component ParSolve which controls the problem solving activity.

The coordinator provides an operation solve(x) to be called by a single user process when it
wants to obtain a solution to a problem instance x . A number of worker processes run different
solution algorithms. Each worker first calls the operation get() to obtain a problem, then solves
it using this worker’s distinct algorithm, and finally returns the solution by calling a result
operation. This behaviour is repeated forever. To ensure that late solutions are not used for
new problems, the problems are assigned unique version numbers to be used when delivering
their solutions.

Below, the ParSolve component is implemented as a monitor:

monitor ParSolve

var done : boolean := true;
no : integer := 0;
prob : X ;
sol : Y ;
solOk ,newProblem : condition;

function solve(x : X) returns Y {
no := no + 1;
prob := x ;
done := false;
signal all(newProblem);
while ¬done do wait(solOk);
return sol

}

function get() returns (X , integer) {
while done do wait(newProblem);
return (prob,no)

}

procedure result(y : Y , ver : integer) {
if ¬done ∧ ver = no then { sol := y ;

done := true;
signal(solOk) }

}

end

The problem is continued on the next page

Page 5 of 5 pages

Question 4.1:

(a) State a monitor invariant which expresses that calls of get do not wait unnecessarily.

(b) Prove that the invariant holds for the monitor.

Question 4.2:

In this question it is desired to limit the number of solution algorithms pursued concurrently
for a given problem. This should be done by augmenting the solve operation with an ekstra
parameter k defining such a limit for the given problem.

Describe which changes must be made to the given monitor ParSolve in order to implement
the modified operation solve(x : X , k : posinteger) where posinteger is the type of positive
integers.

Question 4.3:

The given monitor ParSolve works under the assumption that there is only one user process
calling solve. Now suppose that several user processes exist calling solve concurrently.

(a) Describe a scenario in which a user process receives a wrong solution when calling solve.

(b) Indicate the changes in the given monitor that would be necessary in order to allow the
solve operation to be safely called from concurrent user processes. Problems should still
be solved one at a time.

Question 4.4:

The given coordination strategy does not prevent worker processes from continuing working
on problems which have already been solved by other workers. To reduce such unnecessary
work, a mechanism for cancellation of active workers is requested.

Show how to implement such cancellation by making appropriate changes to the given
monitor ParSolve and the behaviour of the worker processes. You may assume that all
the solving algorithms are iterative, having an outer loop.

Question 4.5:

The functioning of the given monitor ParSolve is now to be implemented by a module
with the following specification:

module ParSolve
op solve(X) returns Y ;
op get() returns (X , integer);
op result(Y , integer);

end

(a) Write a server process for the module ParSolve which services the operations by rendezvous
in such a way that it functions like the given monitor ParSolve as seen from the calling
user process and worker processes.

(b) Discuss whether your solution would work correctly if the solve operation was called con-
currently by several user processes.

