
TECHNICAL UNIVERSITY OF DENMARK Page 1 of 4 pages

Written examination, December 11, 2018

Course: Concurrent Programming Course no. 02158

Aids allowed: All written works of reference

Exam duration: 2 hours

Weighting: PROBLEM 1: approx. 30 %
PROBLEM 2: approx. 30 %

PROBLEM 3: approx. 40 %

PROBLEM 1 (approx. 30 %)

Three processes P1,P2, and P3 execute three operations A, B , and C respectively. The oper-
ations are to be synchronized which is accomplished by exchanging void messages using CSP’s
synchronous communication:

process P1;
repeat

A;
P2 ! ();
P3 ? ()

forever

process P2;
repeat

B ;
if P1 ? () → skip

[] P3 ? () → skip

fi

forever

process P3;
repeat

P2 ! ();
C ;
P1 ! ()

forever

Question 1.1:

Draw a Petri Net in which the three operations A, B , and C are synchronized in the same
way as in the above program. In the net, the operations must appear as transitions.

Question 1.2:

Let the number of times the operations A and C have been executed be denoted by a and
c respectively. Define a predicate I which characterizes the reachable combinations of a
and c in the above program.

[I should thus be an invariant of the program, but you need not show this.]

Question 1.3:

The operations are now to be executed by three sequential processes PA, PB , and PC :

process PA;
repeat

A
forever

process PB ;
repeat

B
forever

process PC ;
repeat

C
forever

Show how semaphores can be used to synchronize the three processes so that A, B , and
C become synchronized in the same way as in the above, CSP-based program.



Page 2 of 4 pages

PROBLEM 2 (approx. 30 %)

The questions in this problem can be solved independently of each other.

Question 2.1:

Let x and y be integer variables. Consider the four statements a, b, c, and d :

a: x := x + 1
b: 〈 x := y + 2 〉
c: y := x + 3
d : x := 4

[Above, 〈 . . . 〉 indicates that the statement is executed indivisibly.]

(a) For each of the six possible selections of two different statements, determine whether the
two statements are mutually atomic.

(b) Assume that the statements b and c are executed concurrently. For each of the two
statements, draw a transition diagram showing its atomic actions.

(c) Determine all possible final values of (x , y), if the concurrent execution of b and c is started
in the state (0, 0).

Question 2.2:

Consider the concurrent program:

var x , y : integer := 0;

co

repeat a1: 〈 (x , y) := (y , 3 − x ) 〉 forever

‖
repeat a2: 〈 x = y ∧ x < 3 → x := x + 1; y := y + 1 〉 forever

‖
repeat a3: 〈 y < x → x := 3; y := 0 〉 forever

oc

(a) Prove inductively that following predicate I is an invariant of the program:

I
∆
= x = y ∨ x + y = 3

(b) Draw the (reachable part of) the transition graph for the program. Only the (x , y) part
of the state has to be shown.

(c) Define a predicate H constraining the ranges of x and y so that H ∧ I becomes a charac-
teristic invariant of the program (i.e. exactly describes the set of reachable (x , y) states).

(d) Consider the following temporal logic properties:

F
∆
= ✷✸ (x = 3)

G
∆
= ✸✷ (x 6= 1) ⇒ ✸ (x = 0)

H
∆
= ✷✸ (x + y ≥ 5)

J
∆
= x = 2 ❀ x = 1

Determine for each of F , G , H , and J whether the property holds for the program under
the assumption of weak fairness. Do the same under the assumption of strong fairness.



Page 3 of 4 pages

PROBLEM 3 (approx. 40 %)

The questions in this problem can be solved independently of each other.

Below, a monitor implementation of a read/write lock is given. Readers call lock(false) before
reading and writers call lock(true) before writing. When done, both readers and writers call
unlock(). The implementation ensures fairness by handling lock calls in strictly first-come-first-
served (FCFS) order. This is accomplished by using one condition queue, head , to hold the first
waiting lock call and another condition queue, tail , to hold the subsequent calls in FIFO order.

monitor FairRWLock

var r ,w : integer := 0;
heading : boolean := false;
head , tail : condition;

procedure lock(write : boolean) {
if heading then wait(tail);
while w > 0 ∨ (write ∧ r > 0) do { heading := true; wait(head) };
if write then w := w + 1 else r := r + 1;
if empty(tail) then heading := false

else signal(tail)
}

procedure unlock() {
if w > 0 then w := w − 1 else r := r − 1;
if r = 0 then signal(head)

}

end

Question 3.1:

(a) Determine the values of r and w as well as the numbers of waiting processes, waiting(head)
and waiting(tail), if the following sequence of monitor calls has been issued and the monitor
has come to rest:

lock(true), lock(false), lock(false), lock(true), lock(false), unlock(), lock(false)

(b) Argue that I
∆
= waiting(tail) > 0 ⇒ heading is a monitor invariant.

(c) State informally (i.e. in words) a monitor invariant which expresses that calls of lock do
not wait unnecessarily on the head condition queue.

Question 3.2:

It is desired to limit the number of active readers. For a given limit k , no further readers
may pass the lock operation while the number of active readers, r , has reached (or exceeds)
k . The initial limit is given by a positive integer constant L. It must be possible to change
the limit dynamically using an operation setLimit(k : posinteger) where posinteger is the
type of positive integers. A call of setLimit(k) should immediately set the limit to k .

Write such a setLimit operation and state which changes must be made to the given
monitor FairRWLock in order to implement the reader limitation efficiently.

The problem is continued on the next page



Page 4 of 4 pages

Question 3.3:

The read/write locking is now to be implemented by a module specified by:

module RWLock
op lock(write : boolean);
op unlock();

end

(a) Write a server process for the module RWLock which services the operations by rendezvous
in such a way that it functions like a basic read/write lock. The calls of lock may be served
in any feasible order and the solution does not have to be fair.

(b) Write an alternative server process for the module RWLock so that the module functions
like the given monitor FairRWlock . In particular, calls of lock should be served in FCFS
order.

[If your solution to (a) already fulfils this requirement, you may just refer to that.]


