
02157 Functional programming Michael R. Hansen
DTU Compute
October 9, 2023

Exercises Week 8

This exercise set consists of 2 problems:

Problem 1 is the first problem from the exam set from May, 2022.

Problem 2 is the the second problem (Questions 1, 2, 3 and 7) from the exam set from
May, 2020. Questions 4, 5 and 6 from that exam set concern tail-recursive functions
and will be addressed later.



Problem 1

A teacher named Robin has a bookshelf with book that are lent to colleagues and students.
The following models of the shelf and the loans are introduced to keep track of books:

type Book = string

type Shelf = Book list // ordered alphabetically

type Date = int

type Name = string

type Loan = Book * Name * Date

Books are just modelled by strings and we assume below that the books appear in alpha-
betic order in a shelf. (Built-in orderings <, <=, etc. can be used to compare books.) A
shelf may contain multiple copies of the same book.

A loan is modelled by a triple (b, n, d), where b is a book, n the name of the borrower
and d the date when the book was borrowed. Names are strings and dates are integers.
Consider, for example, the following declarations of a shelf sh0 with three books and a list
ls0 containing four loans.

let sh0 = ["Introduction to meta-mathematics";

"To mock a mockingbird";

"What is the name of this book"];;

let ls0 = [("Communication and concurrency", "Bob", 4);

("Programming in Haskell", "Paul", 2);;

("Communicating Sequential processes", "Mary", 7);

("Elements of the theory of computation", "Dick", 1)];;

The questions 1. to 6. in this problem should be solved without using functions
from the libraries List, Seq, Set and Map. That is, the requested functions should
be declared using explicit recursion.

In the declarations you can assume that books are ordered alphabetically in shelf arguments
to functions. It is required that books are ordered alphabetically in shelves returned by
functions.

1. Declare a function onShelf: Book -> Shelf -> bool that can check whether a book
is on a shelf.

2. Declare a function toShelf: Book -> Shelf -> Shelf so that toShelf b bs is the
shelf obtained from bs by insertion of b in the right position.



3. Declare a function fromShelf: Book -> Shelf -> Shelf option. The value of the
expression fromShelf b bs is None if bs does not contain b. Otherwise, the value is
Some bs′, where bs′ is obtained from bs by deletion of one occurrence of b.

4. Declare a function addLoan b n d ls, that adds the loan (b, n, d) to the list of loans ls.

Furthermore, declare a function removeLoan b n ls. The value of the function is the list
obtained from the list of loans ls by deletion of the first element of the form (b, n, d),
where d is some date, if such an element exists. Otherwise ls is returned. For example,
removeLoan "Programming in Haskell" "Paul" ls0 gives the list

[("Communication and concurrency", "Bob", 4);

("Communicating Sequential processes", "Mary", 7);

("Elements of the theory of computation", "Dick", 1)]|

5. Declare a function reminders: Date -> Loan list -> (Name * Book) list. The
value of reminders d0 ls is a list of pairs (n, b) from loans (b, n, d) in ls where d < d0.
We interpret d < d0 as “date d is before date d0”.

For example, reminders 3 ls0 has two elements: ("Paul","Programming in Haskell")

and ("Dick", "Elements of the theory of computation").

6. In this problem, we consider a textual form of the reminders from Question 5, where,
for example, a letter reminding Paul to return ”Programming in Haskell” has the form:

"Dear Paul!

Please return "Programming in Haskell".

Regards Robin"

Declare a function toLetters: (Name * Book) list -> string list, that trans-
forms a list pairs (n, b) to a list of corresponding strings (letters). Notice, the escape
characters \n and \" denote newline and citation quotation, respectively.

7. This question should be solved using functions from the List library. You should not
use explicit recursion in the declarations.

1. Give an alternative declaration of toLetters using List.map.

2. Give an alternative declaration of reminders using List.foldBack.



Problem 2

The function allPairs from the List library could have the following declaration:

let rec f x = function

| [] -> []

| y::ys -> (x,y)::f x ys;;

val f : ’a -> ’b list -> (’a * ’b) list

let rec allPairs xs ys =

match xs with

| [] -> []

| x::xrest -> f x ys @ allPairs xrest ys;;

val allPairs : ’a list -> ’b list -> (’a * ’b) list

where f is a helper function. Notice that the F# system automatically infers the types of
f and allPairs.

1. Give an argument showing that ’a -> ’b list -> (’a * ’b) list is indeed the
most general type of f and that ’a list -> ’b list -> (’a * ’b) list is indeed
the most general type of allPairs. That is, any other type for f is an instance of
’a -> ’b list -> (’a * ’b) list. Similarly for allPairs.

An example using f is:

f "a" [1;2;3];;

val it : (string * int) list = [("a", 1); ("a", 2); ("a", 3)]

2. Give an evaluation showing that [("a", 1); ("a", 2); ("a", 3)] is the value of the
expression f "a" [1;2;3]. Present your evaluations using the notation e1 ⇝ e2 from
the textbook, where you can use => in your F# file rather than ⇝. You should include
at least as many evaluation steps as there are recursive calls.

3. Explain why the type of f "a" [1;2;3] is (string * int) list.

4. Give another declaration of f that is based on a single higher-order function from the
List library. The new declaration of f should not be recursive.


