An exercise on sequences: Collatz conjecture

Consider a sequence collatz n generated from a positive natural number n as follows way:

$$
a_{0} a_{1} a_{2} a_{3} \cdots a_{i} \cdots
$$

where $a_{0}=n$ and

$$
a_{i}= \begin{cases}a_{i-1} / 2 & \text { if } a_{i-1} \text { is even } \\ 3 \cdot a_{i-1}+1 & \text { if } a_{i-1} \text { is odd }\end{cases}
$$

for $i>0$.
For example, the first 8 elements of collatz n, for $n=1,2,3,4$, are:

$$
\begin{array}{lcccccccc}
n=1: & 1 & 4 & 2 & 1 & 4 & 2 & 1 & 4 \\
n=2: & 2 & 1 & 4 & 2 & 1 & 4 & 2 & 1 \\
n=3: & 3 & 10 & 5 & 16 & 8 & 4 & 2 & 1 \\
n=4: & 4 & 2 & 1 & 4 & 2 & 1 & 4 & 2
\end{array}
$$

1. Declare a function collatz: int -> seq<int> that for a given $n>0$ denotes the Collatz sequence starting with n.
2. Declare a sequence collatzSequences: seq<seq<int>> with the elements:
collatz(1) collatz(2) collatz(3) collatz(4) ...

Collatz' conjecture is: Every sequence collatz n, for $n>0$, will always reach 1 .
This is an unsolved mathematical problem. An abundance of sequences have been generated and no counter example has so far been found, see e.g. https://en.wikipedia.org/wiki/ Collatz_conjecture.
The stopping time of collatz n is the index in the sequence at which 1 first appears.
3. Declare a sequence stoppingTime: seq<int>. The element t_{i} in this sequence is the stopping time of collatz $(i+1)$, for $i \geq 0$. Hence, the first 4 elements of this sequence are $0,1,7$ and 2 . Hint: You may use Seq.findIndex.

Let $t_{i}, i \geq 0$, denote the elements of stoppingTime. Consider the sequence maxStoppingTimes:

$$
m_{0} m_{1} m_{2} m_{3} \cdots m_{i} \cdots
$$

where m_{0} is t_{0}, m_{1} is max $m_{0} t_{1}$ and m_{i} is $\max m_{i-1} t_{i}$, for $i>0$. Hence, m_{i} is the maximal stopping time found for the sequences collatz k, for $k=1,2, \ldots, i+1$. The first four elements of the sequence are $0,1,7$ and 7 .
4. Make a declaration of the sequence maxStoppingTimes. You may consider making two declarations, where one is based on a recursive function and the other on the library function Seq.scan. Let $s q$ be a sequence with elements $a_{0} a_{1} a_{2} a_{3} \cdots$, then Seq.scan $f x_{0} s q$ gives the sequence

$$
x_{0} x_{1} x_{2} x_{3} x_{4} \cdots
$$

where $x_{1}=f x_{0} a_{0}, x_{2}=f x_{1} a_{1}$ and $x_{i+1}=f x_{i} a_{i}$.

