02157 Functional Programming: Getting started with lists

The purpose of this exercise is to make you acquainted with some high-level features of F \# and to illustrate a solution to a problem, which is based on "declarative" properties of the entities under consideration.

We represent the polynomial $a_{0}+a_{1} \cdot x+\ldots+a_{n} \cdot x^{n}$ with integer coefficients $a_{0}, a_{1}, \ldots, a_{n}$ by the list $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$. For instance, the polynomial $x^{3}+2$ is represented by the list [2, 0, 0,1$]$.

You should solve the following exercises by filling out the program skeleton which is available from the course homepage.

1. Declare an infix F\# function + . for addition of polynomials in the chosen representation.
2. Declare a F \# function mulC for multiplying a polynomial by a constant.
3. Declare a $\mathrm{F} \#$ function mulX for multiplying a polynomial $Q(x)$ by x.
4. Declare an infix $\mathrm{F} \#$ function $*$. for multiplication of polynomials in the chosen representation. The following properties are useful when defining the multiplication:

$$
\begin{aligned}
& 0 \cdot Q(x)=0 \\
& \begin{aligned}
&\left(a_{0}+a_{1} \cdot x+\ldots+a_{n} \cdot x^{n}\right) \cdot Q(x) \\
& \quad=a_{0} \cdot Q(x)+x \cdot\left(\left(a_{1}+a_{2} \cdot x+\ldots+a_{n} \cdot x^{n-1}\right) \cdot Q(x)\right)
\end{aligned}
\end{aligned}
$$

5. Declare a F \# function to give a textual representation for a polynomial. Hint: You can convert an integer a to a string by the expression $\operatorname{string}(a$: int).
