DTU Informatics 13/9 12
Michael R. Hansen

02157 Functional Programming
Merge Sort
Exercises in connection with Lecture 2

You shall develop a version of merge sort, an interesting sorting algorithm that has an
n logn worst-case execution time. The purpose of this particular exercise is to illustrate the
elegance of functional programming — not to develop efficient sorting programs (though they
have the "right” asymptotic complexity). We shall later on in the course study techniques
addressing efficiency:.

Strive for succinctness and elegance when you solve the problem — it is important that
your programs and program designs can be communicated to other people.

Merge Sort

Merge sort is an efficient algorithm for sorting a list of elements that has a worst-case
execution time of order nlogn.

A merge of two sorted lists, e.g. merge [1:4;9; 12], [2; 3 4; 5; 10; 13]) is a new sorted
list, [1;2;3;4:;4;5;9;10;12;13], made up from the elements of the arguments. This operation
can be declared so that it has a worst-case running time proportional to the sum of the
length of the argument lists. Declare such a function.

Declare a function to split a list into two lists of (almost) the same lengths by solving
Exercise 4.8. What is the worst-case execution time of your function?.

The idea behind top-down merge sort is a recursive algorithm: take an arbitrary list xs
with more than one element and split it into two (almost) equal-length lists: zs; and zs,.
Sort zs; and zse and merge the results. The empty list and lists with one element are the
base cases.

Declare a function for top-down merge sort in F# that has a worst-case execution time
of order nlogn. (Argue about the worst-case running time.)



Bottom-up merge sort

The idea behind bottom-up merge sort is explained as follows:

1. Construct a list of one-element lists [[a1];. .., [a;]; [@j+1]; - .., [@y]], from the original
list [ag;...;an].

2. Traverse the list repeatedly, where each traversal merge neighbouring pairs of lists.
For example, after one traversal the list has the form:

[merge([ai], [a2]); merge([as], [ad]); . . ]

This process will end with a list containing one sorted list.

Declare a function for bottom-up merge sort in F# that has a worst-case execution
time of order nlogn. (Argue about the worst-case running time.)

Which of the two merge sort programs would you prefer?

On the course homepage there is a program to generate random lists of length n. Use that
program in the tests of your sorting programs.



