
DTU Informatics 13/9 12
Michael R. Hansen

02157 Functional Programming

Merge Sort

Exercises in connection with Lecture 2

You shall develop a version of merge sort, an interesting sorting algorithm that has an
n logn worst-case execution time. The purpose of this particular exercise is to illustrate the
elegance of functional programming – not to develop efficient sorting programs (though they
have the ”right” asymptotic complexity). We shall later on in the course study techniques
addressing efficiency.

Strive for succinctness and elegance when you solve the problem — it is important that
your programs and program designs can be communicated to other people.

Merge Sort

Merge sort is an efficient algorithm for sorting a list of elements that has a worst-case
execution time of order n log n.

A merge of two sorted lists, e.g. merge [1;4;9; 12], [2; 3 4; 5; 10; 13]) is a new sorted
list, [1;2;3;4;4;5;9;10;12;13], made up from the elements of the arguments. This operation
can be declared so that it has a worst-case running time proportional to the sum of the
length of the argument lists. Declare such a function.

Declare a function to split a list into two lists of (almost) the same lengths by solving
Exercise 4.8. What is the worst-case execution time of your function?.

The idea behind top-down merge sort is a recursive algorithm: take an arbitrary list xs
with more than one element and split it into two (almost) equal-length lists: xs1 and xs2.
Sort xs1 and xs2 and merge the results. The empty list and lists with one element are the
base cases.

Declare a function for top-down merge sort in F# that has a worst-case execution time
of order n logn. (Argue about the worst-case running time.)

1



Bottom-up merge sort

The idea behind bottom-up merge sort is explained as follows:

1. Construct a list of one-element lists [[a1]; . . . , [aj ]; [aj+1]; . . . , [an]], from the original
list [a1; . . . ; an].

2. Traverse the list repeatedly, where each traversal merge neighbouring pairs of lists.
For example, after one traversal the list has the form:

[merge([a1], [a2]); merge([a3], [a4]); . . .]

This process will end with a list containing one sorted list.

Declare a function for bottom-up merge sort in F# that has a worst-case execution
time of order n logn. (Argue about the worst-case running time.)

Which of the two merge sort programs would you prefer?

On the course homepage there is a program to generate random lists of length n. Use that
program in the tests of your sorting programs.

2


