02157 Functional Programming

A brief introduction to Lambda calculus

Michael R. Hansen

$$
f_{f(x+\Delta x)=\sum_{i=0}^{\infty} \frac{(\Delta x) i}{i!} f^{(i \pi}(x)}^{\Delta} \underbrace{1 / 2}_{a} 8 e^{i \pi}=
$$

DTU Informatics
Department of Informatics and Mathematical Modelling

Purpose

The theoretical underpinning of functional languages is λ-calculus.
The purpose is to hint on this underpinning and to introduce concepts of functional languages.

- Informal introduction to λ-calculus
- computations of lambda-calculus and functional languages

Today you will be introduced to basic concepts of λ-calculus and you will get a feeling for the theoretical power of these concepts by the construction of an interpreter for a λ-calculus based language .

Lambda calculus: background

- Invented in the 1930's by the logician Alonzo Church in logical studies and in investigations of function definition and application, and recursion.
- Comprise full computability.
- First uncomputability results were discovered using λ-calculus.

Some questions

- Does the mathematical expression $x-y$ denote a function, say f, of x or a function, say g, of y, or \ldots ?
- Does the notation $h(z)$ mean a function h or h applied to z

Lambda calculus: informal ideas

- $\lambda x . e$ denotes the anonymous function of x which e is.

Examples of function definitions:

- Let f be $\lambda x . x-y$

The expression $x-y$ considered as a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ of x

- $g=\lambda y . x-y$

The expression $x-y$ considered as a function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ of y

- $h=\lambda x \cdot \lambda y \cdot x-y$

The expression $x-y$ considered as a higher-orderfunction $h: \mathbb{Z} \rightarrow(\mathbb{Z} \rightarrow \mathbb{Z})$

Examples of function applications:

- $f(1)=1-y$ and $g(1)=x-1$
- $h(2)=\lambda y .2-y$ and $h(2)(5)=2-5=-3$

Lambda calculus: syntax

The set of λ-terms or just terms Λ is generated from a set V of variables by the rules:

- if $x \in V$, then $x \in \Lambda$ atom
- if $x \in V$ and $t \in \Lambda$, then $(\lambda x . t) \in \Lambda$
- if $t_{1}, t_{2} \in \Lambda$, then $\left(t_{1} t_{2}\right) \in \Lambda$

Notational conventions to avoid brackets:

- Applications associated to the left, i.e. $t_{1} t_{2} t_{3}$ means $\left(\left(t_{1} t_{2}\right) t_{3}\right)$
- Abstraction extends as far as possible to the right, i.e. $\lambda x . P Q$ means $(\lambda x .(P Q))$
- $\lambda x_{1} x_{2} \cdots x_{n} . t$ means $\left(\lambda x_{1} \cdot\left(\lambda x_{2} \cdot\left(\cdots\left(\lambda x_{n} \cdot t\right) \cdots\right)\right)\right)$

Terms could be enriched with constants and constructs for pairs, e.g. $\lambda(x, y) \cdot x-y$ where - is a constant.

Free and bound variables

A occurrence of a variable x is bound in t, if it occurs within the scope of an abstraction $\lambda x . M$ in t; otherwise it is free.

If x has at least one free occurrence in t, then it is called a free variable of t.

Examples:

- $x(\lambda y . y x) v$. Both occurrences of y are bound. Both x 's are free. v is free.
- $(\lambda x . y x)(x z)$. Two left-hand occurrences of x are bound, the right-hand occurrence of x is free. x, y, z are free.

These concepts are also know from mathematics, logic and programming languages. For example:

- $\sum_{x=1}^{10} x^{2}$
- $\forall x \cdot \exists y \cdot x+y>0 \Rightarrow z+x>y$
- int f (int x ,int y$)=\{$ return $\mathrm{x}+\mathrm{y}-\mathrm{z}$; \}
where the occurrences of x and y are bound that those of z are free.

Substitution

Let $t[e / x]$ denote the term obtained from t by substituting e for every free occurrence of x.

In doing so, we rename bound variables to avoid clashes.
Examples:

- $(u \lambda x . y x)[v w / y]=u \lambda x . v w x$.
- $(y \lambda x \cdot x y)[v w / y]=v w \lambda x \cdot x(v w)$.
- $(\lambda x . y)[x / y]=(\lambda z . y)[x / y]=\lambda z . x$. Rename x to avoid clashes.

Comment:

- $(\lambda x . y)$ denote the constant function whose value is y.
- Therefore, $(\lambda x . y)[x / y]$ should intuitively denote the constant function with value x (as $\lambda z . x$ also does).
- The renaming is necessary as $\lambda x . x$ denotes the identity function.

α - conversions

Renaming bound variables does not change the meaning:

- $\sum_{x=1}^{10} x^{2}$ is equal to $\sum_{k=1}^{10} k^{2}$
- $\forall x \cdot \exists y \cdot x+y>0 \Rightarrow z+x>y$ is equivalent to $\forall a \cdot \exists b \cdot a+b>0 \Rightarrow z+a>b$
- int $\mathrm{f}($ int x, int y$)=\{$ return $\mathrm{x}+\mathrm{y}-\mathrm{z}$; \} is the same as
int f (int a , int b$)=\{$ return $\mathrm{a}+\mathrm{b}-\mathrm{z} ;$ \}
Renaming a bound variable in a term is called an α-conversion:
- Alpha: $\lambda x . t \rightarrow_{\alpha} \lambda y . t[y / x]$, when y is not free in t.
renaming of bound variables

Example: $y(\lambda x . x z) y \rightarrow_{\alpha} y(\lambda v . v z) y$

β-reduction

The β-reduction rule formalizes the application of a function to an argument.

Example: $(\lambda x \cdot x+2) 3$ reduces to $3+2$.

- Beta: $(\lambda x . t) e \rightarrow_{\beta} t[e / x]$
function application

Examples

- $(\lambda x \cdot \lambda y \cdot x+y) a \rightarrow_{\beta} \lambda y \cdot a+y$
- $\lambda x \cdot \lambda y \cdot(\lambda x \cdot \lambda y \cdot x x y) y x \rightarrow_{\beta} \quad \lambda x \cdot \lambda y \cdot(\lambda v \cdot y y v) x \rightarrow_{\beta}$ $\lambda x \cdot \lambda y \cdot \overline{y x}$
- $(\lambda x . a) b \rightarrow_{\beta} a$
- $\underline{(\lambda x . x)(\lambda y . a)} b \rightarrow_{\beta}(\lambda y . a) b \rightarrow_{\beta} a$
where free variables, e.g. $+, a, b$ are considered as constants.
Reductions may give bigger terms. Let $\Omega=\lambda x . x x x$.

$$
\Omega \Omega \equiv \underline{(\lambda x . x x x) \Omega} \rightarrow_{\beta} \Omega \Omega \Omega \equiv \underline{(\lambda x . x x x) \Omega \Omega} \rightarrow_{\beta} \Omega \Omega \Omega \Omega \equiv \ldots
$$

Termination depends on reduction strategy:

- $(\lambda x . a)(\Omega \Omega) \rightarrow_{\beta}^{*}(\lambda x . a)(\Omega \Omega \Omega) \rightarrow_{\beta}{ }^{*} \ldots$
- $(\lambda x . a)(\Omega \Omega) \rightarrow_{\beta} a$

Lambda terms as programs

- A program p is a lambda term
- Computations are given by beta-reductions

In a "real" functional programming language, the syntax is "sugared" lambda terms, and computations are based on a specific strategy for applying beta-reduction.

In F \# the reduction strategy is called eager. An application $e_{1} e_{2}$ is evaluated as follows:

- Evaluate e_{1} to an abstraction $\lambda x . e$ (written $\left.e_{1} \rightsquigarrow \lambda x . e\right)$.
- Evaluate e_{2} to a value v (written $\left.e_{2} \rightsquigarrow v\right)$.
- Perform the beta-reduction ($\lambda x . e) v \rightarrow_{\beta} e[v / x]$.

Hence, the "bigstep" evaluation is $e_{1} e_{2} \rightsquigarrow e[v / x]$
This eager strategy is efficient when functions need their arguments.
In the textbook the notion environment is used instead of substitution:

$$
e_{1} e_{2} \rightsquigarrow(e,[x \mapsto v])
$$

Church numerals. Natural number computations

Natural numbers are represented by, for example, Church numerals:

0	1	2	3	\cdots	n
$\lambda f x . x$	$\lambda f . \lambda x . f x$	$\lambda f . \lambda x . f(f x)$	$\lambda f . \lambda x . f(f(f x))$	\cdots	$\lambda f . \lambda x . f^{n} x$

where $f^{0} x=x, f^{i+1} x=f^{i}(f x)$

- the main idea is to use a unary representation of numbers. Rather inefficient - but it works.

Let \bar{n} denote the Church numeral for the natural number n.

Successor and additions operations

- Successor: suc $=\lambda n \cdot \lambda f . \lambda x . n f(f x)$
- Addition: $a d d=\lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n f x)$

Reductions:

$$
\begin{aligned}
\underline{\text { suc } \bar{n}} & =\lambda f \cdot \lambda x \cdot \overline{\left(\lambda f \cdot \lambda x \cdot f^{n} x\right) f}(f x) \\
& =\lambda f \cdot \lambda x \cdot \overline{\left(\lambda x \cdot f^{n} x\right)(f x)} \\
& =\lambda f \cdot \lambda x \cdot \overline{f^{n}(f x)=\lambda f \cdot \lambda x \cdot f^{n+1} x=\overline{n+1}}
\end{aligned}
$$

$$
\underline{\text { add } \bar{m} \bar{n}}=\lambda f \cdot \lambda x \cdot\left(\lambda f \cdot \lambda x \cdot f^{m} x\right) f(\bar{n} f x)
$$

$$
=\lambda f \cdot \lambda x \cdot\left(\lambda x \cdot f^{m} x\right)(\bar{n} f x)
$$

$$
=\lambda f \cdot \lambda x \cdot \bar{f}^{m}\left(\left(\lambda f \cdot \lambda x \cdot f^{n} x\right) f x\right)
$$

$$
=\lambda f \cdot \lambda x \cdot f^{m}\left(\overline{\left.f^{n} x\right)=\lambda f . \lambda x} \cdot f^{m+n} x=\overline{m+n}\right.
$$

Recursion in Lambda Calculus

How to make recursive functions in Lambda calculus?

Answer: use a fixpoint combinator Y.

- An element $x \in A$ is a fixpoint of a function $f: A \rightarrow A$, if $x=f(x)$
- A fixpoint combinator is a higher-order function Y that computes the fixpoint of another function F, i.e. $Y F=F(Y F)$

Example: Let $F=\lambda f$. λn.if $n=0$ then 1 else $n * f(n-1)$.
The factorial function n ! is a fixpoint for F, as

$$
n!=\lambda n \text {.if } n=0 \text { then } 1 \text { else } n *(n-1)!=F n!
$$

Thus the factorial function fact is declared by $Y F$, and e.g.

$$
\begin{aligned}
\text { fact } 2=Y F 2 & =(\lambda n . \text { if } n=0 \text { then } 1 \text { else } n *(Y F(n-1))) 2 \\
& =\text { if } 2=0 \text { then } 1 \text { else } 2 *(Y F 1)=\cdots=2
\end{aligned}
$$

Fixpoint combinators

There are many lambda terms Y satisfying: $Y F=F(Y F)$.
The first is due to Curry:

$$
Y_{c}=\lambda x \cdot(\lambda y \cdot x(y y))(\lambda y \cdot x(y y))
$$

The second is due to Turing:

$$
Y_{t}=(\lambda x \cdot \lambda y \cdot y(x x y))(\lambda x \cdot \lambda y \cdot y(x x y))
$$

An advantage of Y_{t} over Y_{c} is that $Y_{t} F=F\left(Y_{t} F\right)$ can be established by reductions only (an exercise), i.e. Y_{t} is preferable for computational use.

Notice: These operators cannot be represented by an F\# fun-expression. They contain self-applications (of the form $t t$) and these are not well-typed in F .

Summary

- Brief introduction to lambda calculus.
- Hint a the theoretical underpinning of functional languages. (F\# is actually more directly related to typed lambda calculus).
- Hint at the general computability capability of lambda calculus.

Have fun with the construction of a λ-calculus interpreter.

