02157 Functional Programming

Lecture 8: Tail recursive (iterative) functions

Michael R. Hansen

$$
\begin{aligned}
& f(x+\Delta x)=\sum_{i=0}^{\infty} \frac{(\Delta x) f^{i}}{i!} f^{(i n}(x) \\
& \text { cal Modelling }
\end{aligned}
$$

Overview

- Memory management: the stack and the heap
- Iterative (tail-recursive) functions is a simple technique to deal with efficiency in certain situations, e.g.
- to avoid evaluations with a huge amount of pending operations, e.g.

$$
7+(6+(5 \cdots+f 2 \cdots))
$$

- to avoid inadequate use of @ in recursive declarations.
- Iterative functions with accumulating parameters correspond to while-loops
- The notion: continuations, provides a general applicable approach

An example: Factorial function (I)

Consider the following declaration:

```
let rec fact = function
    | 0 -> 1
    | n -> n * fact (n-1);;
val fact : int -> int
```

- What resources are needed to compute fact (N) ?

Considerations:

- Computation time: number of individual computation steps.
- Space: the maximal memory needed during the computation to represent expressions and bindings.

An example: Factorial function (II)

Evaluation:

$$
\begin{array}{ll}
& f \operatorname{fact}(N) \\
\rightsquigarrow & (\mathrm{n} * \operatorname{fact}(\mathrm{n}-1),[\mathrm{n} \mapsto N]) \\
\rightsquigarrow & N * \operatorname{fact}(N-1) \\
\rightsquigarrow & N *(\mathrm{n} * \operatorname{fact}(\mathrm{n}-1),[\mathrm{n} \mapsto N-1]) \\
\rightsquigarrow & N *((N-1) * \operatorname{fact}(N-2)) \\
\vdots & \\
\rightsquigarrow & N *((N-1) *((N-2) *(\cdots(4 *(3 *(2 * 1))) \cdots))) \\
\rightsquigarrow & N *((N-1) *((N-2) *(\cdots(4 *(3 * 2)) \cdots))) \\
\vdots & \\
\rightsquigarrow & N!
\end{array}
$$

Time and space demands: proportional to N
Is this satisfactory?

Another example: Naive reversal (I)

```
let rec naiveRev = function
    [] -> []
    x::xs -> naiveRev xs @ [x];;
val naiveRev : 'a list -> 'a list
```

Evaluation of naiveRev $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$:

```
        naiveRev [ }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
naiveRev [ }\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}]@[\mp@subsup{x}{1}{}
\rightsquigarrow (naiveRev [ }\mp@subsup{x}{3}{},\ldots,\mp@subsup{x}{n}{}]@[\mp@subsup{x}{2}{}])@[\mp@subsup{x}{1}{}
    \vdots
\rightsquigarrow ((\cdots)(([]@[\mp@subsup{x}{n}{}])@[\mp@subsup{x}{n-1}{}])@\cdots@[\mp@subsup{x}{2}{}])@[\mp@subsup{x}{1}{}])
```

Space demands: proportional to n
Time demands: proportional to n^{2}

Examples: Accumulating parameters

Efficient solutions are obtained by using more general functions:

$$
\begin{array}{ll}
\operatorname{fact} A(n, m) & =n!\cdot m, \text { for } n \geq 0 \\
\operatorname{revA}\left(\left[x_{1}, \ldots, x_{n}\right], y s\right) & =\left[x_{n}, \ldots, x_{1}\right] @ y s
\end{array}
$$

We have:

$$
\begin{aligned}
n! & =\operatorname{factA}(n, 1) \\
\operatorname{rev}\left[x_{1}, \ldots, x_{n}\right] & =\operatorname{revA}\left(\left[x_{1}, \ldots, x_{n}\right],[]\right)
\end{aligned}
$$

m and $y s$ are called accumulating parameters. They are used to hold the temporary result during the evaluation.

Declaration of factA

$$
\begin{aligned}
& \text { let rec fact } A=\text { function } \\
& \qquad \begin{array}{l}
(0, m)->m \\
(n, m)->\operatorname{fact} A(n-1, n * m) ; ;
\end{array}
\end{aligned}
$$

An evaluation:

$$
\begin{aligned}
& f \operatorname{factA}(5,1) \\
\rightsquigarrow & (\operatorname{factA}(n-1, n * m),[n \mapsto 5, m \mapsto 1]) \\
\rightsquigarrow & \operatorname{factA}(4,5) \\
\rightsquigarrow & (\operatorname{fact} A(n-1, n * m),[n \mapsto 4, m \mapsto 5]) \\
\rightsquigarrow & \operatorname{factA}(3,20) \\
\rightsquigarrow & \cdots \\
\rightsquigarrow & \operatorname{factA}(0,120) \rightsquigarrow(m,[m \mapsto 120]) \rightsquigarrow 120
\end{aligned}
$$

Space demand: constant.
Time demands: proportional to n

Declaration of revA

```
let rec revA = function
    | ([], ys) -> ys
    | (x::xs, ys) -> revA(xs, x::ys) ;;
```

An evaluation:

$$
\begin{array}{ll}
& \operatorname{revA}([1,2,3],[]) \\
\rightsquigarrow & \operatorname{revA}([2,3], 1::[]) \\
\rightsquigarrow & \operatorname{revA}([3], 2::[1]) \\
\rightsquigarrow & \operatorname{revA}([3],[2,1]) \\
\rightsquigarrow & \operatorname{revA}([], 3::[2,1]) \\
\rightsquigarrow & \operatorname{revA}([],[3,2,1]) \\
\rightsquigarrow & {[3,2,1]}
\end{array}
$$

Space and time demands:
proportional to n (the length of the first list)

Iterative (tail-recursive) functions (I)

The declarations of factA and revA are tail-recursive functions

- the recursive call is the last function application to be evaluated in the body of the declaration e.g. itfac $(3,20)$ and $\operatorname{revA}([3],[2,1])$
- only one set of bindings for argument identifiers is needed during the evaluation

Example

```
let rec factA = function
    | (0,m) -> m
    (* recursive "tail-call" *)
```

- only one set of bindings for argument identifiers is needed during the evaluation

```
        factA(5,1)
\rightsquigarrow (factA (n,m), [n\mapsto5,m\mapsto1])
\rightsquigarrow (factA (n-1,n*m),[n\mapsto5,m\mapsto1])
factA (4,5)
\rightsquigarrow (factA (n,m),[n\mapsto4,m\mapsto5])
\rightsquigarrow (factA (n-1,n*m),[n\mapsto4,m\mapsto5])
m..
factA}(0,120)\rightsquigarrow(m,[m\mapsto120])\rightsquigarrow12
```


Concrete resource measurements: factorial functions

```
let xs16 = List.init 1000000 (fun i -> 16); ;
val xsl6 : int list = [16; 16; 16; 16; 16; ...]
#time;; // a toggle in the interactive environment
for i in xsl6 do let _ = fact i in ();;
Real: 00:00:00.051, CPU: 00:00:00.046, ...
for i in xs16 do let _ = factA(i,1) in (); ;
Real: 00:00:00.024, CPU: 00:00:00.031, ...
```

The performance gain of factA is much better than the indicated factor 2 because the for construct alone uses about 12 ms :

```
for i in xs16 do let _ = () in ();;
Real: 00:00:00.012, CPU: 00:00:00.015, ...
```

Real: time elapsed by the execution. CPU: time spent by all cores.

Concrete resource measurements: reverse functions

```
let xs20000= [1 .. 20000];;
naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]
revA(xs20000, []); ;
Real: 00:00:00.001, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0
val it : int list = [20000; 19999; 19998; ...]
```

- The naive version takes 7.624 seconds - the iterative just 1 ms .
- The use of append (@) has been reduced to a use of cons (: :). This has a dramatic effect of the garbage collection:
- No object is reclaimed when reva is used
- $825+253$ obsolete objects were reclaimed using the naive version

Let's look at memory management

Memory management: stack and heap

- Primitive values are allocated on the stack
- Composite values are allocated on the heap

$$
\begin{aligned}
& \text { let } \mathrm{xs}=[5 ; 6 ; 7] ; ; \\
& \text { let } \mathrm{ys}=3:: 4:: \mathrm{xs} ; \boldsymbol{;} \\
& \text { let } \mathrm{zs}=\mathrm{xs} @ \mathrm{ys} ; ; \\
& \text { let } \mathrm{n}=27 ; ;
\end{aligned}
$$

Observations

No unnecessary copying is done:
(1) The linked lists for $y s$ is not copied when building a linked list for $y:: y s$.
2 Fresh cons cells are made for the elements of $x s$ only when building a linked list for $x s$ @ $y s$.

since a list is a functional (immutable) data structure

The running time of @ is linear in the length of its first argument.

Operations on stack and heap

Example:

$$
\begin{aligned}
\text { let } \mathrm{zs}= & \text { let } \mathrm{xs}=[1 ; 2] \\
& \text { let ys }=[3 ; 4] \\
& x s @ y s ; ;
\end{aligned}
$$

Initial stack and heap prior to the evaluation of the local declarations:
stack

$\mathrm{sf}_{0}\{\mathrm{zs} ?$

Operations on stack: Push

Evaluation of the local declarations initiated by pushing a new stack frame onto the stack:

The auxiliary entry result refers to the value of the let-expression.

Operations on stack: Pop

The top stack frame is popped from the stack when the evaluation of the let-expression is completed:

The resulting heap contains two obsolete cells marked with ' \dagger '

Operations on the heap: Garbage collection

The memory management system uses a garbage collector to reclaim obsolete cells in the heap behind the scene.

The garbage collector manages the heap as partitioned into three groups or generations: gen 0 , gen1 and gen2, according to their age. The objects in gen0 are the youngest while the objects in gen 2 are the oldest.

The typical situation is that objects die young and the garbage collector is designed for that situation.

Example:

```
naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]
```


The limits of the stack and the heap

The stack is big:

```
let rec bigList n = if n=0 then [] else 1::bigList(n-1);;
bigList 120000;;
val it : int list = [1; 1; 1; 1; 1; 1; 1; 1;...]
bigList 130000;;
Process is terminated due to StackOverflowException.
```

More than $1.2 \cdot 10^{5}$ stack frames are pushed in recursive calls.
The heap is much bigger:

```
let rec bigListA n xs = if n=0 then xs
        else bigListA (n-1) (1::xs);;
let xsVeryBig = bigListA 12000000 [];;
val xsVeryBig : int list = [1; 1; 1; 1; 1; 1;...]
let xsTooBig = bigListA 13000000 [];;
System.OutOfMemoryException: ...
```

A list with more than $1.2 \cdot 10^{7}$ elements can be created.

The iterative bigListA function does not exhaust the stack. WHY?

Iterative (tail-recursive) functions (II)

Tail-recursive functions are also called iterative functions.

- The function $f(n, m)=(n-1, n * m)$ is iterated during evaluations for factA.
- The function $g(x:: x s, y s)=(x s, x:: y s)$ is iterated during evaluations for revA.

The correspondence between tail-recursive functions and while loops is established in the textbook.

An example:

```
let factW n =
    let ni = ref n
    let r = ref 1
    while !ni>0 do
        r := !r * !ni ; ni := !ni-1
    !r;;
```


Iterative functions (III)

A function $g: \tau->\tau^{\prime}$ is an iteration of $f: \tau->\tau$ if it is an instance of:

$$
\text { let rec } g z=\text { if } p z \text { then } g(f z) \text { else } h z
$$

for suitable predicate $p: \tau->$ bool and function $h: \tau->\tau^{\prime}$.
The function g is called an iterative (or tail-recursive) function.

Examples: factA and revA are easily declared in the above form:

```
let rec factA(n,m) =
    if n<>0 then factA(n-1,n*m) else m;;
let rec revA(xs,ys) =
    if not (List.isEmpty xs)
    then revA(List.tail xs, (List.head xs)::ys)
    else ys;;
```


Iterative functions: evaluations (I)

Consider: let rec $g \mathrm{z}=$ if $p \mathrm{z}$ then $g(f \mathrm{z})$ else $h \mathrm{z}$
Evaluation of the $g v$:

```
    \(g v\)
\(\leadsto\) (if \(p z\) then \(g(f z)\) else \(h z,[z \mapsto v])\)
\(\leadsto \quad(g(f z),[z \mapsto v])\)
\(\leadsto g\left(f^{1} v\right)\)
\(\rightsquigarrow\left(\right.\) if \(p z\) then \(g(f z)\) else \(\left.h z,\left[z \mapsto f^{1} v\right]\right)\)
\(\rightsquigarrow \quad\left(g(f z),\left[z \mapsto f^{1} v\right]\right)\)
\(\rightsquigarrow \quad g\left(f^{2} v\right)\)
\(\rightsquigarrow \ldots\)
\(\rightsquigarrow \quad\) (if \(p z\) then \(g(f z)\) else \(\left.h z,\left[z \mapsto f^{n} v\right]\right)\)
\(\rightsquigarrow\left(h z,\left[z \mapsto f^{n} v\right]\right) \quad\) suppose \(p\left(f^{n} v\right) \rightsquigarrow\) false
\(\leadsto h\left(f^{n} v\right)\)
```


Iterative functions: evaluations (II)

Observe two desirable properties:

- there are n recursive calls of g,
- at most one binding for the argument pattern z is 'active' at any stage in the evaluation, and
- the iterative functions require one stack frame only.

Iteration vs While loops

Iterative functions are executed efficiently:

```
#time;;
for i in 1 .. 1000000 do let _ = factA(16,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031,
GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()
for i in 1 .. 1000000 do let _ = factW 16 in ();;
Real: 00:00:00.048, CPU: 00:00:00.046,
GC gen0: 9, gen1: 0, gen2: 0
val it : unit = ()
```

- the tail-recursive function actually is faster than the imperative while-loop based version

Example: Fibonacci numbers (I)

A declaration based directly on the mathematical definition:

```
let rec fib = function
    0 -> 0
    1 -> 1
    n -> fib(n-1) + fib(n-2);;
val fib : int -> int
```

is highly inefficient. For example:

```
        fib 4
mib 3 + fib 2
\rightsquigarrow (fib 2 + fib 1) + fib 2
\rightsquigarrow((fib 1 + fib 0) + fib 1) + fib 2
\rightsquigarrow \cdots.m2+(fib 1 + fib 0)
m...
```

Ex: fib 44 requires around 10^{9} evaluations of base cases.

Example: Fibonacci numbers (II)

An iterative solution gives high efficiency:

```
fun recitfib(n,a,b) = if n <> 0
    then itfib(n-1,a+b,a)
    else a;;
```

The expression itfib($n, 0,1$) evaluates to F_{n}, for any $n \geq 0$:

- Case $n=0$: itfib $(0,0,1) \rightsquigarrow 0\left(=F_{0}\right)$
- Case $n>0$:

$$
\begin{array}{ll}
& \text { itfib }(n, 0,1) \\
\rightsquigarrow & \text { itfib }(n-1,1,0)=\text { itfib }\left(n-1, F_{1}, F_{0}\right) \\
\rightsquigarrow & \text { itfib }\left(n-2, F_{1}+F_{0}, F_{1}\right) \\
\rightsquigarrow & \text { itfib }\left(n-2, F_{2}, F_{1}\right) \\
\vdots & \\
\rightsquigarrow & \text { itfib }\left(0, F_{n}, F_{n-1}\right) \\
\rightsquigarrow & F_{n}
\end{array}
$$

Limits of accumulating parameters

Accumulating parameters are not sufficient to achieve a tail-recursive version for arbitrary recursive functions.

Consider for example:

```
type BinTree<'a> =
        Leaf
        Node of BinTree<'a> * 'a * BinTree<'a>; ;
let rec count = function
    Leaf -> 0
    Node(tl,n,tr) -> count tl + count tr + 1; ;
```

A counting function:

```
countA: int -> BinTree<'a> -> int
```

using an accumulating parameter will not be tail-recursive due to the expression containing recursive calls on the left and right sub-trees. (Ex. 9.8)

Continuations

Continuation: A function for the "rest" of the computation.
The continuation-based version of bigList has a continuation

```
c: int list -> int list
```

as argument:

```
let rec bigListC n c =
    if n=0 then c []
    else bigListC (n-1) (fun res -> c(1::res));;
val bigListC : int -> (int list -> 'a) -> 'a
```

- Base case: "feed" the result of bigList into the continuation c.
- Recursive case: let res denote the value of bigList $(\mathrm{n}-1)$:
- The rest of the computation of bigList n is $1:$:res.
- The continuation of bigListC $(n-1)$ is
fun res -> c(1::res)

Observations

- bigListC is a tail-recursive function, and
- the calls of c are tail calls in the base case of bigListc and in the continuation: fun res $->c(1:: r e s)$.

The stack will hence neither grow due to the evaluation of recursive calls of bigListc nor due to calls of the continuations that have been built in the heap:

```
bigListC 16000000 id;;
Real: 00:00:08.586, CPU: 00:00:08.314,
GC gen0: 80, gen1: 60, gen2: 3
val it : int list = [1;1;1;1; 1;...]
```

- Slower than bigList
- Can generate longer lists than bigList

Example: Tail-recursive count

```
let rec countc t c =
    match t with
        Leaf -> c 0
        Node(tl,n,tr) ->
        countC tl (fun vl -> countC tr (fun vr -> c(vl+vr+1)))
val countC : BinTree<'a> -> (int -> 'b) -> 'b
countC (Node(Node(Leaf,1,Leaf),2,Node(Leaf,3,Leaf))) id;;
val it : int = 3
```

- Both calls of countC are tail calls
- The calls of the c is tail call

Hence, the stack will not grow when evaluating countc $t c$.

- count C can handle bigger trees than count
- count is faster

Summary and recommendations

- Loops in imperative languages corresponds to a special case of recursive function called tail recursive functions.
- Have iterative functions in mind when dealing with efficiency, e.g.
- to avoid evaluations with a huge amount of pending operations
- to avoid inadequate use of @ in recursive declarations.
- Memory management: stack, heap, garbage collection
- Continuations - provide a technique to turn arbitrary recursive functions into tail-recursive ones.
trades stack for heap
Note: Iterative function does not replace algorithmic idea and the use of good algorithms and datastructure.

