02157 Functional Programming

Lecture 8: Tail recursive (iterative) functions

Michael R. Hansen

DTU Informatics Department of Informatics and Mathematical Modelling

Overview

- Memory management: the stack and the heap
- Iterative (tail-recursive) functions is a simple technique to deal with efficiency in certain situations, e.g.
 - to avoid evaluations with a huge amount of pending operations, e.g.

 $7+(6+(5\cdots+f\ 2\cdots))$

- to avoid inadequate use of @ in recursive declarations.
- Iterative functions with accumulating parameters correspond to while-loops
- The notion: continuations, provides a general applicable approach

Consider the following declaration:

```
let rec fact = function
    | 0 -> 1
    | n -> n * fact(n-1);;
val fact : int -> int
```

• What resources are needed to compute fact(N)?

Considerations:

- Computation time: number of individual computation steps.
- Space: the maximal memory needed during the computation to represent expressions and bindings.

An example: Factorial function (II)

Evaluation:

$$fact(N)
(n * fact(n-1), [n \mapsto N])
N * fact(N - 1)
N * (n * fact(n-1), [n \mapsto N - 1])
N * ((N - 1) * fact(N - 2))
...
N * ((N - 1) * ((N - 2) * (... (4 * (3 * (2 * 1))) ...)))
N * ((N - 1) * ((N - 2) * (... (4 * (3 * 2)) ...)))
N * ((N - 1) * ((N - 2) * (... (4 * (3 * 2)) ...)))
...
N * (N - 1) * ((N - 2) * (... (4 * (3 * 2)) ...)))
...
N * (N!$$

Time and space demands: proportional to *N* Is this satisfactory?

DTU

≘

Another example: Naive reversal (I)

```
let rec naiveRev = function
    [] -> []
    | x::xs -> naiveRev xs @ [x];;
val naiveRev : 'a list -> 'a list
```

Evaluation of naiveRev [x₁, x₂,..., x_n]:

```
naiveRev [X_1, X_2, \dots, X_n]

\rightarrow naiveRev [X_2, \dots, X_n] @ [X_1]

\rightarrow (naiveRev [X_3, \dots, X_n] @ [X_2]) @ [X_1]

\vdots

\rightarrow ((\cdots(([]@[X_n])@[X_{n-1}])@ \cdots @ [X_2])@[X_1])
```

Space demands: proportional to n

satisfactory

Time demands: proportional to n^2

not satisfactory

Efficient solutions are obtained by using more general functions:

 $factA(n,m) = n! \cdot m, \text{ for } n \ge 0 \\ revA([x_1,\ldots,x_n],ys) = [x_n,\ldots,x_1] @ys$

We have:

 $\begin{array}{lll} n! & = & \texttt{factA}(n, 1) \\ \texttt{rev}[x_1, \dots, x_n] & = & \texttt{revA}([x_1, \dots, x_n], []) \end{array}$

m and *ys* are called *accumulating parameters*. They are used to hold the temporary result during the evaluation.

Declaration of factA

An evaluation:

```
factA(5,1)
(factA(n-1,n*m), [n \mapsto 5, m \mapsto 1])
(factA(4,5))
(factA(n-1,n*m), [n \mapsto 4, m \mapsto 5])
(factA(3,20))
(factA(0,120) \rightsquigarrow (m, [m \mapsto 120]) \rightsquigarrow 120)
```

Space demand: constant.

Time demands: proportional to n

Declaration of revA

An evaluation:

revA([1,2,3],[]) → revA([2,3],1::[]) → revA([3],2::[1]) → revA([3],[2,1]) → revA([],3::[2,1]) → revA([],[3,2,1]) → [3,2,1]

Space and time demands:

proportional to n (the length of the first list)

The declarations of factA and revA are tail-recursive functions

- the recursive call is the *last function application* to be evaluated in the body of the declaration e.g. *itfac*(3,20) and *revA*([3],[2,1])
- only one set of bindings for argument identifiers is needed during the evaluation

Example

 only one set of bindings for argument identifiers is needed during the evaluation

```
let xs16 = List.init 1000000 (fun i -> 16);;
val xs16 : int list = [16; 16; 16; 16; 16; ...]
#time;; // a toggle in the interactive environment
for i in xs16 do let _ = fact i in ();;
Real: 00:00:00.051, CPU: 00:00:00.046, ...
```

```
for i in xs16 do let _ = factA(i,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031, ...
```

The performance gain of factA is much better than the indicated factor 2 because the for construct alone uses about 12 ms:

for i in xs16 do let _ = () in ();;
Real: 00:00:00.012, CPU: 00:00:00.015, ...

Real: time elapsed by the execution. CPU: time spent by all cores.

ntii

```
let xs20000 = [1 .. 20000];;
naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]
revA(xs20000,[]);;
Real: 00:00:00.001, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0
val it : int list = [20000; 19999; 19998; ...]
```

- The naive version takes 7.624 seconds the iterative just 1 ms.
- The use of append (@) has been reduced to a use of cons (::). This has a dramatic effect of the garbage collection:
 - No object is reclaimed when revA is used
 - 825+253 obsolete objects were reclaimed using the naive version

Let's look at memory management

ntii

Memory management: stack and heap

- Primitive values are allocated on the stack
- · Composite values are allocated on the heap

```
let xs = [5;6;7];;
let ys = 3::4::xs;;
let zs = xs @ ys;;
let n = 27;;
```


DTU

Observations

No unnecessary copying is done:

- The linked lists for ys is not copied when building a linked list for y :: ys.
- 2 Fresh cons cells are made for the elements of xs only when building a linked list for xs @ ys.

since a list is a functional (immutable) data structure

The running time of @ is linear in the length of its first argument.

Example:

Initial stack and heap prior to the evaluation of the local declarations:

Evaluation of the local declarations initiated by pushing a new stack frame onto the stack:

The auxiliary entry result refers to the value of the let-expression.

ntii

The top stack frame is popped from the stack when the evaluation of the let-expression is completed:

The resulting heap contains two obsolete cells marked with '†'

DTU

The memory management system uses a *garbage collector* to reclaim obsolete cells in the heap behind the scene.

The garbage collector manages the heap as partitioned into three groups or *generations*: gen0, gen1 and gen2, according to their age. The objects in gen0 are the youngest while the objects in gen2 are the oldest.

The typical situation is that objects die young and the garbage collector is designed for that situation.

Example:

```
naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]
```


The stack is big:

```
let rec bigList n = if n=0 then [] else 1::bigList(n-1);;
bigList 120000;;
val it : int list = [1; 1; 1; 1; 1; 1; 1; 1; 1; ...]
bigList 130000;;
Process is terminated due to StackOverflowException.
```

More than $1.2 \cdot 10^5$ stack frames are pushed in recursive calls.

The heap is much bigger:

A list with more than $1.2 \cdot 10^7$ elements can be created.

The iterative bigListA function does not exhaust the stack. WHY?

Iterative (tail-recursive) functions (II)

DTU

Tail-recursive functions are also called *iterative functions*.

- The function f(n, m) = (n 1, n * m) is iterated during evaluations for factA.
- The function g(x :: xs, ys) = (xs, x :: ys) is iterated during evaluations for revA.

The correspondence between tail-recursive functions and while loops is established in the textbook.

An example:

```
let factW n =
    let ni = ref n
    let r = ref 1
    while !ni>0 do
        r := !r * !ni ; ni := !ni-1
    !r;;
```

A function $g : \tau \rightarrow \tau'$ is an *iteration of* $f : \tau \rightarrow \tau$ if it is an instance of:

let rec g z = if p z then g(f z) else h z

for suitable predicate $p: \tau \rightarrow bool$ and function $h: \tau \rightarrow \tau'$.

The function *g* is called an *iterative* (or *tail-recursive*) function.

Examples: factA and revA are easily declared in the above form:

```
let rec factA(n,m) =
    if n<>0 then factA(n-1,n*m) else m;;
```

```
let rec revA(xs,ys) =
    if not (List.isEmpty xs)
    then revA(List.tail xs, (List.head xs)::ys)
    else ys;;
```

Iterative functions: evaluations (I)

Consider: let rec g = if p = ih p = ih p = g(f = z) else h = zEvaluation of the g = v:

```
\begin{array}{ll} g \ v \\ \rightsquigarrow & (\text{if } p \ z \ \text{then } g(f \ z) \ \text{else } h \ z \ , \ [z \mapsto v]) \\ \rightsquigarrow & (g(f \ z), \ [z \mapsto v]) \\ \rightsquigarrow & g(f^1 v) \\ \rightsquigarrow & (\text{if } p \ z \ \text{then } g(f \ z) \ \text{else } h \ z \ , \ [z \mapsto f^1 v]) \\ \rightsquigarrow & (g(f \ z), \ [z \mapsto f^1 v]) \\ \rightsquigarrow & g(f^2 v) \\ \rightsquigarrow & \dots \\ \rightsquigarrow & (\text{if } p \ z \ \text{then } g(f \ z) \ \text{else } h \ z \ , \ [z \mapsto f^n v]) \\ \rightsquigarrow & (h \ z, \ [z \mapsto f^n v]) \\ \implies & \text{suppose } p(f^n v) \ \rightsquigarrow \text{false} \\ \rightsquigarrow & h(f^n v) \end{array}
```

NTH

Observe two desirable properties:

- there are *n* recursive calls of *g*,
- at most *one binding* for the argument pattern z is 'active' at any stage in the evaluation, and
- the iterative functions require one stack frame only.

Iterative functions are executed efficiently:

```
#time;;
for i in 1 .. 1000000 do let _ = factA(16,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031,
GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()
for i in 1 .. 1000000 do let _ = factW 16 in ();;
Real: 00:00:00.048, CPU: 00:00:00.046,
GC gen0: 9, gen1: 0, gen2: 0
val it : unit = ()
```

• the tail-recursive function actually is faster than the imperative while-loop based version

Example: Fibonacci numbers (I)

A declaration based directly on the mathematical definition:

```
let rec fib = function
    | 0 -> 0
    | 1 -> 1
    | n -> fib(n-1) + fib(n-2);;
val fib : int -> int
```

is highly inefficient. For example:

fib 4

$$\Rightarrow$$
 fib 3 + fib 2
 \Rightarrow (fib 2 + fib 1) + fib 2
 \Rightarrow ((fib 1 + fib 0) + fib 1) + fib 2
 \Rightarrow ... \Rightarrow 2+(fib 1 + fib 0)
 \Rightarrow ...

Ex: fib 44 requires around 10^9 evaluations of base cases.

ntii

Example: Fibonacci numbers (II)

DTU

An iterative solution gives high efficiency:

```
fun recitfib(n,a,b) = if n <> 0
    then itfib(n-1,a+b,a)
    else a;;
```

The expression itfib(n, 0, 1) evaluates to F_n , for any $n \ge 0$:

- Case n = 0: itfib $(0, 0, 1) \rightsquigarrow 0 (= F_0)$
- Case *n* > 0:

```
\begin{array}{ll} \text{itfib}(n,0,1) \\ \rightsquigarrow & \text{itfib}(n-1, 1, 0) = \text{itfib}(n-1, F_1, F_0) \\ \rightsquigarrow & \text{itfib}(n-2, F_1 + F_0, F_1) \\ \rightsquigarrow & \text{itfib}(n-2, F_2, F_1) \\ \vdots \\ \implies & \text{itfib}(0, F_n, F_{n-1}) \\ \rightsquigarrow & F_n \end{array}
```

Accumulating parameters are not sufficient to achieve a tail-recursive version for arbitrary recursive functions.

Consider for example:

```
type BinTree<'a> =
    | Leaf
    | Node of BinTree<'a> * 'a * BinTree<'a>;;
let rec count = function
    | Leaf -> 0
    | Node(tl,n,tr) -> count tl + count tr + 1;;
```

A counting function:

```
countA: int -> BinTree<'a> -> int
```

using an accumulating parameter will not be tail-recursive due to the expression containing recursive calls on the left and right sub-trees. (Ex. 9.8)

Continuation: A function for the "rest" of the computation.

The continuation-based version of ${\tt bigList}$ has a continuation

```
c: int list -> int list
```

as argument:

```
let rec bigListC n c =
    if n=0 then c []
    else bigListC (n-1) (fun res -> c(1::res));;
val bigListC : int -> (int list -> 'a) -> 'a
```

- Base case: "feed" the result of bigList into the continuation c.
- Recursive case: let res denote the value of bigList(n-1):
 - The rest of the computation of bigList n is 1::res.
 - The continuation of $\mathtt{bigListC(n-1)}$ is

```
fun res -> c(1::res)
```

Observations

- bigListC is a tail-recursive function, and
- the calls of c are tail calls in the base case of bigListC and in the continuation: fun res -> c(l::res).

The stack will hence neither grow due to the evaluation of recursive calls of bigListC nor due to calls of the continuations that have been built in the heap:

```
bigListC 16000000 id;;
Real: 00:00:08.586, CPU: 00:00:08.314,
GC gen0: 80, gen1: 60, gen2: 3
val it : int list = [1; 1; 1; 1; 1; ...]
```

- Slower than bigList
- Can generate longer lists than bigList

```
let rec countC t c =
match t with
    Leaf -> c 0
    Node(tl,n,tr) ->
    countC tl (fun vl -> countC tr (fun vr -> c(vl+vr+1)))
val countC : BinTree<'a> -> (int -> 'b) -> 'b
countC (Node(Node(Leaf,1,Leaf),2,Node(Leaf,3,Leaf))) id;;
val it : int = 3
```

- Both calls of countC are tail calls
- The calls of the c is tail call

Hence, the stack will not grow when evaluating countC t c.

- countC can handle bigger trees than count
- count is faster

Summary and recommendations

- Loops in imperative languages corresponds to a *special case* of recursive function called tail recursive functions.
- Have iterative functions in mind when dealing with efficiency, e.g.
 - to avoid evaluations with a huge amount of pending operations
 - to avoid inadequate use of @ in recursive declarations.
- Memory management: stack, heap, garbage collection
- Continuations provide a technique to turn arbitrary recursive functions into tail-recursive ones.

trades stack for heap

Note: Iterative function does not replace algorithmic idea and the use of good algorithms and datastructure.