## 02157 Functional Programming

Interpreters for two simple languages

- including exercises

Michael R. Hansen

$$
f(x+\Delta x)=\sum_{i=0}^{\infty} \frac{(\Delta x) f^{i}}{i!} f^{(i n}(x) \underbrace{1}_{a} 8 e^{i \pi}=
$$

DTU Informatics
Department of Informatics and Mathematical Modelling

## Purpose

To show the power of a functional programming language, we present a prototype for interpreters for a simple expression language with local declarations and a simple WHILE language.

- Concrete syntax: defined by a contextfree grammar
- Abstract syntax (parse trees): defined by algebraic datatypes
- Semantics, i.e. meaning of programs: inductively defined following the structure of the abstract syntax


## succinct programs, fast prototyping

The interpreter for the simple expression language is a higher-order function:

$$
\text { eval : Program } \rightarrow \text { Environment } \rightarrow \text { Value }
$$

The interpreter for a simple imperative programming language is a higher-order function:

$$
\text { I : Program } \rightarrow \text { State } \rightarrow \text { State }
$$

## Expressions with local declarations

Concrete syntax:

$$
a *(-3+(\text { let } x=5 \text { in } x+a))
$$

The abstract syntax is defined by an algebraic datatype:

```
type ExprTree = { l lonst of int 
Minus of ExprTree
Sum of ExprTree * ExprTree
Diff of ExprTree * ExprTree
Prod of ExprTree * ExprTree
Let of string * ExprTree * ExprTree;;
```

Example:

```
let et =
    Prod(Ident "a",
    Sum(Minus (Const 3),
        Let("x", Const 5, Sum(Ident "x", Ident "a"))));;
```


## Evaluation in Environments

An environment contains bindings of identifiers to values.
A let tree Let ( $s t r, t_{1}, t_{2}$ ) is evaluated as in an environment env.
(1) Evaluate $t_{1}$ to value $v_{1}$
(2) Evaluate $t_{2}$ in the env extended with the binding of str to $v$.

An evaluation function

```
eval: ExprTree -> map<string,int> -> int
```

is defined as follows:

```
let rec eval t env =
    match t with
        Const n m
        Ident s -> Map.find s env
        Minus t -> - (eval t env)
        Sum(t1,t2) -> eval t1 env + eval t2 env
        Diff(t1,t2) -> eval t1 env - eval t2 env
        Prod(t1,t2) -> eval t1 env * eval t2 env
        Let(s,t1,t2) -> let v1 = eval t1 env
        let env1 = Map.add s v1 env
        eval t2 env1;;
```


## Example

Note that the meaning of a let expression is directly represented in the program.

## Example

```
let env = Map.add "a" -7 Map.empty;;
eval et env;;
val it : int = 35
```


## Example: Imperative Factorial program

An example of concrete syntax for a factorial program:

$$
\begin{aligned}
& \{\text { Pre: } x=K \text { and } x>=0\} \\
& \quad y:=1 ; \\
& \text { while ! }(x=0) \\
& \text { do }(y:=y * x ; x:=x-1) \\
& \{\text { Post: } y=K!\}
\end{aligned}
$$

Typical ingredients

- Arithmetical expressions
- Boolean expressions
- Statements (assignments, sequential composition, loops, . . .


## Arithmetic Expressions

- Grammar:

$$
a E x p::-n|v| a E x p+a E x p|a E x p \cdot a E x p| a E x p-a E x p \mid(a E x p)
$$

where $n$ is an integer and $v$ is a variable.

- The declaration for the abstract syntax follows the grammar

```
type aExp = (* Arithmetical expressions *)
    N of int (* numbers *)
    V of string (* variables *)
    Add of aExp * aExp (* addition *)
    Mul of aExp * aExp (* multiplication *)
    Sub of aExp * aExp;; (* subtraction *)
```

The abstract syntax is representation independent (no ' + ', ' - ', '(',')', etc.), no ambiguities - one works directly on syntax trees.

## Semantics of Arithmetic Expressions

- A state maps variables to integers

```
type state = Map<string,int>;;
```

- The meaning of an expression is a function:

```
A: aExp -> state -> int
```

defined inductively on the structure of arithmetic expressions

```
let rec A a s
    match a with
    | N n ll
```


## Boolean Expressions

- Abstract syntax

- Semantics B : bExp $\rightarrow$ State $\rightarrow$ bool

```
let B b s =
    match b with
    |T -> true
    ....
```


## Statements: Abstract Syntax

```
type stm \(=\) (* statements
*)
*)
    Skip
    Seq of stm * stm (* sequential composition *)
    ITE of bExp * stm * stm (* if-then-else *)
    While of bExp * stm; (* while *)
```

Example of concrete syntax:

$$
y:=1 ; \text { while } \operatorname{not}(x=0) \text { do }(y:=y * x ; x:=x-1)
$$

Abstract syntax ?

## Update of states

An imperative program performs a sequence of state updates.

- The expression

$$
\text { update } y v s
$$

is the state that is as except that $y$ is mapped to $v$. Mathematically:

$$
(\text { update } y v s)(x)= \begin{cases}v & \text { if } x=y \\ s(x) & \text { if } x \neq y\end{cases}
$$

- Update is a higher-order function with the declaration:

$$
\text { let update } x \vee \mathrm{~s}=\text { Map.add } \mathrm{x} v \mathrm{~s} ; \text {; }
$$

- Type?


## Interpreter for Statements

- The meaning of statements is a function

$$
\text { I : stm } \rightarrow \text { state } \rightarrow \text { state }
$$

that is defined by induction on the structure of statements:

```
let rec I stm s =
    match stm with
    Ass(x,a) -> update x ( ... ) s
    Skip
    Seq(stm1, stm2) ->
    ITE(b, stm1, stm2) ->
    While(b, stm) -> ... ; ;
```


## Example: Factorial function

```
(* \(\{\) pre: \(\mathrm{x}=\mathrm{K}\) and \(\mathrm{x}>=0\) \}
        \(y:=1\); while ! \((x=0)\) do ( \(y:=y * x ; x:=x-1)\)
    \{post: \(y=K!\}\)
                            *)
let \(\mathrm{fac}=\) Seq(Ass("y", N 1),
    While(Neg(Eq(V "x", N 0)),
    Seq(Ass("y", Mul(V "x", V "y")) ,
        Ass("x", Sub(V "x", N 1)) ))); ;
(* Define an initial state
let \(s 0\) = Map.ofList [("x",4)];
val s0 : Map<string, int> \(=\operatorname{map}[(" x ", 4)]\)
(* Interpret the program
let \(s 1=1\) fac s0; ;
val s1 : Map<string,int> = map [("x", 1); ("y", 24)]
```


## Exercises

- Complete the program skeleton for the interpreter, and try some examples.
- Extend the abstract syntax and the interpreter with if-then and repeat-until statements.
- Suppose that an expression of the form inc(x) is added. It adds one to the value of $x$ in the current state, and the value of the expression is this new value of $x$.

How would you refine the interpreter to cope with this construct?

