02157 Functional Programming

Finite Trees (I)

Michael R. Hansen

Overview

Finite Trees

- Algebraic Datatypes.
- Non-recursive type declarations: Disjoint union (Lecture 4)
- Recursive type declarations: Finite trees
- Recursions following the structure of trees
- Illustrative examples:
- Search trees
- Expression trees
- File systems
- Mutual recursion, layered pattern, polymorphic type declarations

Finite trees

A finite tree is a value which may contain a subcomponent of the same type.

Example: A binary search tree

Condition: for every node containing the value x : every value in the left subtree is smaller then x, and every value in the right subtree is greater than x.

Example: Binary Trees

A recursive datatype is used to represent values which are trees.

```
type Tree = Lf
    | Br of Tree*int*Tree;;
Lf;;
val it : Tree = Lf
Br;;
val it : Tree * int * Tree -> Tree = <fun:clo@4>
```

The two parts in the declaration are rules for generating trees:

- Lf is a tree
- if t_{1}, t_{2} are trees, n is an integer, then $\mathrm{Br}\left(t_{1}, n, t_{2}\right)$ is a tree.

The tree from the previous slide is denoted by:

```
Br (Br (Br (Lf, 2, Lf) , 7, Lf),
    9,
    Br(Br(Lf, 13,Lf), 21,Br(Lf, 25,Lf)))
```


Binary search trees: Insertion

- Recursion on the structure of trees
- Constructors Lf and Br are used in patterns
- The search tree condition is an invariant for insert

```
let rec insert i = function
    Lf -> Br(Lf,i,Lf)
    Br(t1,j,t2) as tr ->
        match compare i j with
            0 -> tr
            n when n<0 -> Br(insert i t1, j, t2)
                    -> Br(t1,j, insert i t2);;
val insert : int -> Tree -> Tree
```

Example:

```
let t1 = Br(Lf, 3, Br(Lf, 5, Lf));;
let t2 = insert 4 t1;;
val t2 : Tree = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))
```


Binary search trees: member and inOrder traversal

```
let rec memberOf \(i=f u n c t i o n\)
    Lf -> false
    Br(t1,j,t2) -> match compare i j with
        \(0 \quad->\) true
        n when \(\mathrm{n}<0\)-> memberOf i t 1
                        -> memberOf i t2;;
val memberOf : int -> Tree -> bool
```

In-order traversal

```
let rec inOrder = function
    |f -> []
    Br(t1,j,t2) -> inOrder t1 @ [j] @ inOrder t2;;
val toList : Tree -> int list
```

gives a sorted list

```
inOrder(Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));;
val it : int list = [1; 3; 4; 5]
```


Deletions in search trees

Delete minimal element in a search tree: Tree -> int * Tree

```
let rec delMin = function
    | Br(Lf,i,t2) -> (i,t2)
    Br(t1,i,t2) -> let (m,t1') = delMin t1
        (m, Br(t1',i,t2));;
```

Delete element in a search tree: int -> Tree -> Tree

```
let rec delete j = function
    Lf -> Lf
    Br(t1,i,t2) ->
        match compare i j with
        n when n<0 -> Br(t1,i,delete j t2)
        n when n>0 -> Br(delete j t1,i,t2)
                        ->
            match t2 with
            Lf -> t1
            | _ -> let (m,t2') = delMin t2
            Br(t1,m,t2'); ;
```


Parameterize type declarations

The programs on search trees just requires an ordering on elements - they no not need to be integers.

A polymorphic tree type is declared as follows:

```
type Tree<'a> = Lf | Br of Tree<'a> * 'a * Tree<'a>; ;
```

Program texts are unchanged (though polymorphic now), for example

```
let rec insert i = function
    | Br(t1,j,t2) as tr -> match compare i j with
val insert: 'a -> Tree<'a> -> Tree<'a> when 'a: comparison
let ti = insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))
let ts = insert "4" (Br(Lf, "3", Br(Lf, "5", Lf))); ;
val ts : Tree<string>
    = Br (Lf,"3",Br (Br (Lf,"4",Lf),"5",Lf))
```


Higher-order functions for tree traversals

For example

```
let rec inFoldBack \(f t e=\)
        match t with
        Lf -> e
        Br (t1, x,t2) -> let er = inFoldBack f t2 e
        inFoldBack f t1 (f x er); ;
val inFoldBack: ('a -> 'b -> 'b) -> Tree<'a> -> 'b -> 'b
```

satisfies

```
inFoldBack fte = List.foldBack f(inOrder t)e
```

It traverses the tree without building the list- For example:

```
let ta = Br (Br (Br (Lf,-3,Lf),0,Br(Lf,2,Lf)),5,Br(Lf,7,Lf));
inOrder ta;;
val it : int list = [-3; 0; 2; 5; 7]
inFoldBack (-) ta 0;;
val it : int = 1
```


Example: Expression Trees

```
type Fexpr =
    Const of float
    X
    Add of Fexpr * Fexpr
    Sub of Fexpr * Fexpr
    Mul of Fexpr * Fexpr
    Div of Fexpr * Fexpr;;
```

Defines 6 constructors:

- Const: float \rightarrow Fexpr
- X : Fexpr
- Add: Fexpr * Fexpr $->$ Fexpr
- Sub: Fexpr * Fexpr $->$ Fexpr
- Mul: Fexpr * Fexpr -> Fexpr
- Div: Fexpr * Fexpr -> Fexpr

Symbolic Differentiation D: Fexpr -> Fexpr

A classic example in functional programming:

```
let rec D = function
    Const _ -> Const 0.0
    X -> Const 1.0
Add(fe1,fe2) -> Add(D fe1,D fe2)
Sub(fe1,fe2) -> Sub(D fe1,D fe2)
Mul(fe1,fe2) -> Add(Mul(D fe1,fe2),Mul(fe1,D fe2))
Div(fe1,fe2) -> Div(
Sub(Mul(D fe1,fe2),Mul(fe1,D fe2)),
Mul(fe2,fe2));;
```

Notice the direct correspondence with the rules of differentiation.
Can be tried out directly, as tree are "just" values, for example:

```
D(Add(Mul(Const 3.0, X), Mul(X, X)));;
val it : Fexpr =
    Add
        (Add (Mul (Const 0.0,X),Mul (Const 3.0,Const 1.0)),
        Add (Mul (Const 1.0,X),Mul (X,Const 1.0)))
```


Expressions: Computation of values

Given a value (a float) for x , then every expression denote a float.

```
compute : float -> Fexpr -> float
```

let rec compute $x=$ function
Const $r \quad \rightarrow r$
$X \quad->x$
Add (fe1,fe2) $->$ compute x fe1 + compute x fe2
Sub (fe1,fe2) $->$ compute x fe1 - compute x fe2
Mul(fe1,fe2) $->$ compute x fe1 * compute x fe2
Div(fe1,fe2) \rightarrow compute x fe1 / compute x fe2; ;

Example:

```
compute 4.0 (Mul(X, Add(Const 2.0, X)));;
val it : float = 24.0
```


Mutual recursion. Example: File system

- A file system is a list of elements
- an element is a file or a directory, which is a named file system

Mutually recursive type declarations

- are combined using and

```
type FileSys = Element list
and Element \(=\)
    File of string
    Dir of string * FileSys
let \(\mathrm{d} 1=\)
    Dir("d1", [File "a1";
        Dir("d2", [File "a2";
                                Dir("d3", [File "a3"])]);
    File "a4";
    Dir("d3", [File "a5"])
    ])
```

The type of d 1 is ?

Mutually recursive function declarations

- are combined using and

Example: extract the names occurring in file systems and elements.

```
let rec namesFileSys = function
    [] -> []
        e::es -> (namesElement e) @ (namesFileSys es)
and namesElement = function
    File s [s]
    Dir(s,fs) -> s :: (namesFileSys fs) ; ;
val namesFileSys : Element list -> string list
val namesElement : Element -> string list
namesElement d1 ; ;
val it : string list = ["d1"; "a1"; "d2"; "a2";
    "d3"; "a3"; "a4"; "d3"; "a5"]
```


Summary

Finite Trees

- concepts
- illustrative examples

Notice the strength of having trees as values.
Notice that polymorphic types and mutual recursion are NOT biased to trees.

