02157 Functional Programming

Collections: Sets and Maps

Michael R. Hansen

$$
f(x+\Delta x)=\sum_{i=0}^{\infty} \frac{(\Delta x) f^{i(i n}(x)}{i!} \underbrace{\sqrt{7}}_{a} 8 e^{i \pi}=
$$

DTU Informatics
Department of Informatics and Mathematical Modelling

Overview

Sets and Maps as abstract data types

- Useful in the modelling and solution of many problems
- Many similarities with the list library

Recommendation: Use these libraries whenever it is appropriate.

The set concept (1)

A set (in mathematics) is a collection of element like

$$
\{\text { Bob, Bill, Ben }\},\{1,3,5,7,9\}, \mathbb{N} \text {, and } \mathbb{R}
$$

- the sequence in which elements are enumerated is of no concern, and
- repetitions among members of a set is of no concern either

It is possible to decide whether a given value is in the set.

$$
\text { Alice } \notin\{\text { Bob, Bill, Ben }\} \quad \text { and } \quad 7 \in\{1,3,5,7,9\}
$$

The empty set containing no element is written $\}$ or \emptyset.

The sets concept (2)

A set A is a subset of a set B, written $A \subseteq B$, if all the elements of A are also elements of B, for example

$$
\{\text { Ben, Bob }\} \subseteq\{\text { Bob, Bill, Ben }\} \quad \text { and } \quad\{1,3,5,7,9\} \subseteq \mathbb{N}
$$

Two sets A and B are equal, if they are both subsets of each other:

$$
A=B \quad \text { if and only if } \quad A \subseteq B \text { and } B \subseteq A
$$

i.e. two sets are equal if they contain exactly the same elements.

The subset of a set A which consists of those elements satisfying a predicate p can be expressed using a set-comprehension:

$$
\{x \in A \mid p(x)\}
$$

For example:

$$
\{1,3,5,7,9\}=\{x \in \mathbb{N} \mid \operatorname{odd}(x) \text { and } x<11\}
$$

The set concept (3)

Some standard operations on sets:

$$
\begin{aligned}
& A \cup B=\{x \mid x \in A \text { or } x \in B\} \\
& A \cap B=\{x \mid x \in A \text { and } x \in B\} \\
& A \backslash B=\{x \in A \mid x \notin B\}
\end{aligned}
$$

union

 intersection difference
(a) $A \cup B$

(b) $A \cap B$

(c) $A \backslash B$

Figure: Venn diagrams for (a) union, (b) intersection and (c) difference

For example
$\{$ Bob, Bill, Ben $\} \cup\{$ Alice, Bill, Ann $\}=$ \{Alice, Ann, Bob, Bill, Ben $\}$
$\{$ Bob, Bill, Ben $\} \cap\{$ Alice, Bill, Ann $\}=\{$ Bill $\}$
$\{$ Bob, Bill, Ben $\} \backslash\{$ Alice, Bill, Ann $\}=\{$ Bob, Ben $\}$

Abstract Data Types

An abstract Data Type: A type together with a collection of operations, where

- the representation of values is hidden.

An abstract data type for sets must have:

- Operations to generate sets from the elements. Why?
- Operations to extract the elements of a set. Why?
- Standard operations on sets.

Sets in F\#

The set library of $\mathrm{F} \#$ supports finite sets. An efficient implementation is based on a balanced binary tree.

Examples:

```
set ["Bob"; "Bill"; "Ben"];;
val it : Set<string> = set ["Ben"; "Bill"; "Bob"]
set [3; 1; 9; 5; 7; 9; 1];;
val it : Set<int> = set [1; 3; 5; 7; 9]
```

Equality of two sets is tested in the usual manner:

```
set["Bob";"Bill";"Ben"] = set["Bill";"Ben";"Bill";"Bob"];;
val it : bool = true
```

Sets are order on the basis of a lexicographical ordering:

```
compare (set ["Ann";"Jane"]) (set ["Bill";"Ben";"Bob"]);;
val it : int = -1
```


Selected operations (1)

- ofList: 'a list -> Set<'a>, where ofList $\left[a_{0} ; \ldots ; a_{n-1}\right]=\left\{a_{0} ; \ldots ; a_{n-1}\right\}$
- toList: Set<'a> -> 'a list, where toList $\left\{a_{0}, \ldots, a_{n-1}\right\}=\left[a_{0} ; \ldots ; a_{n-1}\right]$
- add: 'a -> Set<'a> -> Set<'a>, where add $a A=\{a\} \cup A$
- remove: 'a -> Set<'a> -> Set<'a>, where remove a $A=A \backslash\{a\}$
- contains: 'a -> Set<'a> -> bool, where contains a $A=a \in A$
- minElement: Set<'a> -> 'a) where minElement $\left\{a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}\right\}=a_{0}$ when $n>0$

Notice that minElement is well-defined due to the ordering:

```
Set.minElement (Set.ofList ["Bob"; "Bill"; "Ben"]);;
val it : string = "Ben"
```


Selected operations (2)

- union: Set<'a> -> Set<'a> -> Set<'a>, where union $A B=A \cup B$
- intersect: Set<'a> -> Set<'a> -> Set<'a>, where intersect $A B=A \cap B$
- difference: Set<'a> -> Set<'a> -> Set<' a>, where difference $A B=A \backslash B$
- exists: ('a -> bool) -> Set<'a> -> bool, where exists $p A=\exists x \in A . p(x)$
- forall: ('a -> bool) -> Set<'a> -> bool, where forall $p A=\forall x \in A . p(x)$
- fold: ('a -> 'b -> 'a) -> 'a -> Set<'b> -> 'a, where

$$
\begin{aligned}
& \text { fold } f \text { a }\left\{b_{0}, b_{1}, \ldots, b_{n-2}, b_{n-1}\right\} \\
& =f\left(f\left(f\left(\cdots f\left(f\left(a, b_{0}\right), b_{1}\right), \ldots\right), b_{n-2}\right), b_{n-1}\right)
\end{aligned}
$$

These work similar to their List siblings, e.g.

$$
\text { Set.fold }(-) 0(\text { set }[1 ; 2 ; 3])=((0-1)-2)-3=-6
$$

where the ordering is exploited.

Example: Map Coloring (1)

Maps and colors are modelled in a more natural way using sets:

```
type country = string;;
type map = Set<country*country>;;
type color = Set<country>;;
type coloring = Set<color>;;
```


WHY?

Two countries c_{1}, c_{2} are neighbors in a map m,
if either $\left(c_{1}, c_{2}\right) \in m$ or $\left(c_{2}, c_{1}\right) \in m$:

```
    let areNb c1 c2 m =
        Set.contains (c1,c2) m || Set.contains (c2,c1) m;;
```

Color col and be extended by a country c given map m,
if for every country c^{\prime} in $c o l: c$ and c^{\prime} are not neighbours in m
let canBeExtBy m col $\mathrm{c}=$ Set.forall (fun $c^{\prime}->$ not (areNb $\left.c^{\prime} c m\right)$) col; ;

Example: Map Coloring (2)

The function

```
extColoring: map -> coloring -> country -> coloring
```

is declared as a recursive function over the coloring:
WHY not use a fold function?

```
let rec extcoloring m cols c =
    if Set.isEmpty cols
    then Set.singleton (Set.singleton c)
    else let col = Set.minElement cols
        let cols' = Set.remove col cols
        if canBeExtBy m col c
        then Set.add (Set.add c col) cols'
        else Set.add col (extColoring m cols' c);;
```

Notice similarity to a list recursion:

- base case [] corresponds to the empty set
- for a recursive case $\mathrm{x}:: \mathrm{xs}$, the head x corresponds to the minimal element col and the tail xs corresponds to the "rests" set cols'
The list-based version is more efficient (why?) and more readable.

Example: Map Coloring (3)

A set of countries is obtained from a map by the function:

```
countries: map -> Set<country>
```

that is based on repeated insertion of the countries into a set:

```
let countries m =
    Set.fold
    (fun set (c1,c2) -> Set.add c1 (Set.add c2 set))
    Set.empty
    m;;
```

The function
colCntrs: map -> Set<country> -> coloring
is based on repeated insertion of countries in colorings using the extColoring function:

```
let colCntrs m cs = Set.fold (extColoring m) Set.empty cs;;
```


Example: Map Coloring (4)

The function that creates a coloring from a map is declared using functional composition:

```
let colMap m = colCntrs m (countries m);;
let exMap = Set.ofList [("a","b"); ("c","d"); ("d","a")]; ;
colMap exMap;;
val it : Set<Set<string>>
    = set [set ["a"; "c"]; set ["b"; "d"]]
```


The map concept

A map from a set A to a set B is a finite subset A^{\prime} of A together with a function m defined on $A^{\prime}: m: A^{\prime} \rightarrow B$.
The set A^{\prime} is called the domain of m : $\operatorname{dom} m=A^{\prime}$.
A map m can be described in a tabular form:

a_{0}	b_{0}
a_{1}	b_{1}

a_{n-1}	b_{n-1}

- An element a_{i} in the set A^{\prime} is called a key
- A pair $\left(a_{i}, b_{i}\right)$ is called an entry, and
- b_{i} is called the value for the key a_{i}.

We denote the sets of entries of a map as follows:

$$
\operatorname{entriesOf}(m)=\left\{\left(a_{0}, b_{0}\right), \ldots,\left(a_{n-1}, b_{n-1}\right)\right\}
$$

Selected map operations in F\#

- ofList: ('a*'b) list -> Map<'a,'b> ofList $\left[\left(a_{0}, b_{0}\right) ; \ldots ;\left(a_{n-1}, b_{n-1}\right)\right]=m$
- add: 'a -> 'b -> Map<'a,'b> -> Map<'a,'b> add $a b m=m^{\prime}$, where m^{\prime} is obtained m by overriding m with the entry (a, b)
- find: 'a -> Map<' a,'b> -> 'b find $a m=m(a)$, if $a \in \operatorname{dom} m$; otherwise an exception is raised
- tryFind: 'a -> Map<'a,'b> -> 'b option tryFind $a m=$ Some $(m(a))$, if $a \in \operatorname{dom} m$; None otherwise
foldBack: ('a->'b->'c->'c) -> Map<'a,'b> -> 'c -> 'c foldBack $f m c=f a_{0} b_{0}\left(f a_{1} b_{1}\left(f \ldots\left(f a_{n-1} b_{n-1} c\right) \cdots\right)\right)$

A few examples

```
let reg1 = Map.ofList [("a1",("cheese",25));
    ("a2",("herring",4));
    ("a3",("soft drink",5))];;
val reg1 : Map<string,(string * int)> =
    map [("a1", ("cheese", 25)); ("a2", ("herring", 4));
        ("a3", ("soft drink", 5))]
```

An entry can be added to a map using add and the value for a key in a map is retrieved using either find or tryFind:

```
let reg2 = Map.add "a4" ("bread", 6) reg1;;
val reg2 : Map<string,(string * int)> =
    map [("a1", ("cheese", 25)); ("a2", ("herring", 4));
        ("a3", ("soft drink", 5)); ("a4", ("bread", 6))]
Map.find "a2" reg1;;
val it : string * int = ("herring", 4)
Map.tryFind "a2" reg1;;
val it : (string * int) option = Some ("herring", 4)
```


An example using Map.foldBack

We can extract the list of article codes and prices for a given register using the fold functions for maps:

```
let reg1 = Map.ofList [("a1",("cheese",25));
        ("a2",("herring",4));
        ("a3",("soft drink",5))];;
Map.foldBack (fun ac (_,p) cps -> (ac,p)::cps) reg1 [];;
val it : (string * int) list =
    [("a1", 25); ("a2", 4); ("a3", 5)]
```

This and other higher-order functions are similar to their List and Set siblings.

Example: Cash register (1)

```
type articleCode = string;;
type articleName = string;;
type noPieces = int;;
type price = int;;
type info = noPieces * articleName * price;;
type infoseq = info list;;
type bill = infoseq * price;;
```

The natural model of a register is using a map:
type register = Map<articleCode, articleName*price>; ;
since an article code is a unique identification of an article.
First version:

```
type item = noPieces * articleCode;;
type purchase = item list;;
```


Example: Cash register (1) - a recursive program

```
exception FindArticle;;
(* makebill: register -> purchase -> bill *)
let rec makeBill reg = function
    | [] (np,ac)::pur -> ([],0)
    match Map.tryFind ac reg with
        None -> raise FindArticle
        Some(aname, aprice) ->
            let tprice = np*aprice
                let (infos,sumbill) = makeBill reg pur
                ((np,aname,tprice) ::infos, tprice+sumbill); ;
let pur = [(3,"a2"); (1,"a1")];;
makeBill reg1 pur;;
val it : (int * string * int) list * int =
    ([(3, "herring", 12); (1, "Cheese", 25)], 37)
```

- the lookup in the register is managed by a Map.tryFind

Example: Cash register (2) - using List.foldBack

```
let makeBill' reg pur =
    let f (np,ac) (infos,billprice)
        = let (aname, aprice) = Map.find ac reg
        let tprice = np*aprice
        ((np,aname,tprice)::infos, tprice+billprice)
    List.foldBack f pur ([],0);;
makeBill' reg1 pur;;
val it : (int * string * int) list * int =
    ([(3, "herring", 12); (1, "cheese", 25)], 37)
```

- the recursion is handled by List.foldBack
- the exception is handled by Map. find

Example: Cash register (2) - using maps for purchases

The purchase: 3 herrings, one piece of cheese, and 2 herrings, is the same as a purchase of one piece of cheese and 5 herrings.

A purchase associated number of pieces with article codes:

$$
\text { type purchase } \quad=\text { Map<articleCode,noPieces>; ; }
$$

A bill is produced by folding a function over a map-purchase:

```
let makeBill'r reg pur =
    let f ac np (infos,billprice)
        = let (aname, aprice) = Map.find ac reg
        let tprice = np*aprice
        ((np,aname,tprice)::infos, tprice+billprice)
    Map.foldBack f pur ([],0);;
let purMap = Map.ofList [("a2",3); ("a1",1)];;
val purMap : Map<string,int> = map [("a1", 1); ("a2", 3)]
makeBill'' reg1 purMap;;
val it = ([(1, "cheese", 25); (3, "herring", 12)], 37)
```


Summary

- The concepts of sets and maps.
- Fundamental operations on sets and maps.
- Applications of sets and maps.

