02157 Functional Programming

Tagged values and Higher-order list functions

Michael R. Hansen

$$
{ }_{f(x+\Delta x)=\sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i n}(x)}^{2}
$$

Part I: Disjoint Sets - An Example

A shape is either a circle, a square, or a triangle

- the union of three disjoint sets

```
type shape =
    Circle of float
    Square of float
    Triangle of float*float*float;;
```

The tags Circle, Square and Triangle are constructors:

- Circle 2.0;
> val it : shape = Circle 2.0
- Triangle(1.0, 2.0, 3.0); ;
> val it : shape $=$ Triangle (1.0, 2.0, 3.0)
- Square 4.0; ;
> val it : shape = Square 4.0

Constructors in Patterns

A shape-area function is declared

```
let area = function
    Circle r -> System.Math.PI * r * r
    Square a -> a * a
    Triangle(a,b, c) ->
    let }\textrm{s}=(\textrm{a}+\textrm{b}+\textrm{c})/2.
    sqrt(s*(s-a) * (s-b) * (s-c)) ; ;
> val area : shape -> real
```

following the structure of shapes.

- a constructor only matches itself

```
        area (Circle 1.2)
\leadsto(System.Math.PI * r * r, [r\mapsto1.2])
```

$\leadsto \quad .$.

Enumeration types - the months

Months are naturally defined using tagged values::

```
type month = January | February | March | April
    | May | June | July | August | September
    October | November | December ;;
```

The days-in-a-month function is declared by

```
let daysOfMonth = function
    February -> 28
    | April | June | September | November -> 30
    - -> 31 ;;
val daysOfMonth : month -> int
```


The option type

```
type 'a option = None | Some of 'a
```

Distinguishes the cases "nothing" and "something".

predefined

The constructor Some and None are polymorphic:

```
Some false;;
val it : bool option = Some false
Some (1, "a"); ;
val it : (int * string) option = Some (1, "a")
None;;
val it : 'a option = None
```


Example

Find first position of element in a list:

```
let rec findPosI p x = function
        y::_ when x=y -> Some p
        _::ys -> findPosI (p+1) x ys
        [] -> None;;
val findPosI : int -> 'a -> 'a list -> int option when ...
let findPos x ys = findPosI 0 x ys;;
val findPos : 'a -> 'a list -> int option when ...
```


Examples

```
findPos 4 [2 .. 6];;
val it : int option = Some 2
findPos 7 [2 .. 6];;
val it : int option = None
    Option.get(findPos 4 [2 .. 6]);;
val it : int = 2
```


Part 2:Motivation

Higher-order functions are

- everywhere

$$
\sum_{i=a}^{b} f(i), \frac{d f}{d x},\{x \in A \mid P(x)\}, \ldots
$$

- powerful

Parameterized modules succinct code . . .

HIGHER-ORDER FUNCTIONS ARE USEFUL

now down to earth

- Many recursive declarations follows the same schema.

For example:

```
let rec \(f=\) function
    | [] \(\quad->\quad\)...
    x::XS \(->\)... \(f(x S) \ldots\)
```

Succinct declarations achievable using higher-order functions
Contents

- Higher-order list functions (in the library)
- map
- exists, forall, filter, tryFind
- foldBack, fold

Avoid (almost) identical code fragments by parameterizing functions with functions

A simple declaration of a list function

A typical declaration following the structure of lists:

```
let rec posList = function
    | [] -> []
    | x::xs -> (x > 0)::posList xs;;
val posList : int list -> bool list
posList [4; -5; 6];;
val it : bool list = [true; false; true]
```

Applies the function fun $\mathrm{x}->\mathrm{x}>0$ to each element in a list

Another declaration with the same structure

```
let rec addElems = function
    |] -> []
    (x,y)::zs -> (x+y)::addElems zs;;
val addElems : (int * int) list -> int list
addElems [(1,2) ; (3,4)];;
val it : int list = [3; 7]
```

Applies the addition function + to each pair of integers in a list

The function: map

Applies a function to each element in a list

$$
\operatorname{map} f\left[v_{1} ; v_{2} ; \ldots ; v_{n}\right]=\left[f\left(v_{1}\right) ; f\left(v_{2}\right) ; \ldots ; f\left(v_{n}\right)\right]
$$

Declaration

```
let rec map \(f=\) function
    | [] -> []
    x::xs -> f x :: map f xs;
val map : ('a -> 'b) -> 'a list -> 'b list
```

Succinct declarations can be achieved using map, e.g.

```
let posList = map (fun x -> x > 0);;
val posList : int list -> bool list
let addElems = map (fun (x,y) -> x+y);;
val addElems : (int * int) list -> int list
```


Exercise

Declare a function

$$
g\left[x_{1}, \ldots, x_{n}\right]=\left[x_{1}^{2}+1, \ldots, x_{n}^{2}+1\right]
$$

Remember

$$
\operatorname{map} f\left[v_{1} ; v_{2} ; \ldots ; v_{n}\right]=\left[f\left(v_{1}\right) ; f\left(v_{2}\right) ; \ldots ; f\left(v_{n}\right)\right]
$$

Higher-order list functions: exists

Predicate: For some x in $x s: p(x)$.

$$
\text { exists } p \times s= \begin{cases}\text { true } & \text { if } p(x)=\text { true for some } x \text { in } x s \\ \text { false } & \text { otherwise }\end{cases}
$$

Declaration
Library function

```
let rec exists p = function
        | [] -> false
        x::xs -> p x || exists p xs;;
val exists : ('a -> bool) -> 'a list -> bool
```


Example

```
exists (fun x -> x>=2) [1; 3; 1; 4];;
val it : bool = true
```


Exercise

Declare isMember function using exists.

```
let isMember x ys = exists ????? ;;
val isMember : 'a -> 'a list -> bool when 'a : equality
```


Remember

$$
\text { exists } p \times s= \begin{cases}\text { true } & \text { if } p(x)=\text { true for some } x \text { in } x s \\ \text { false } & \text { otherwise }\end{cases}
$$

Higher-order list functions: all

Predicate: For every x in $x s: p(x)$.

$$
\text { forall } p \times s= \begin{cases}\text { true } & \text { if } p(x)=\text { true, for all elements } x \text { in } x s \\ \text { false } & \text { otherwise }\end{cases}
$$

Declaration

```
let rec forall p = function
    [] -> true
    x::xs -> p x && forall p xs;;
val all : ('a -> bool) -> 'a list -> bool
```

Example

```
forall (fun x -> x>=2) [1; 3; 1; 4];;
val it : bool = false
```


Exercises

Declare a function
disjoint xs ys
which is true when there are no common elements in the lists $x s$ and $y s$, and false otherwise.

Declare a function
subset xs ys
which is true when every element in the lists $x s$ is in $y s$, and false otherwise.

Remember

$$
\text { forall } p x s= \begin{cases}\text { true } & \text { if } p(x)=\text { true, for all elements } x \text { in } x s \\ \text { false } & \text { otherwise }\end{cases}
$$

Set comprehension: $\{x \in x s: p(x)\}$
filter $p x s$ is the list of those elements x of $x s$ where $p(x)=$ true.
Declaration
Library function

```
let rec filter p = function
        | [] [ -> [] 
        else filter p xs;;
val filter : ('a -> bool) -> 'a list -> 'a list
```


Example

```
filter System.Char.IsLetter ['1'; 'p'; 'F'; '_'];;
val it : char list = ['P'; 'F']
```

where System. Char. IsLetter c is true iff
$c \in\left\{{ }^{\prime} A^{\prime}, \ldots,{ }^{\prime} z^{\prime}\right\} \cup\left\{{ }^{\prime} a^{\prime}, \ldots,{ }^{\prime} z^{\prime}\right\}$

Exercise

Declare a function
inter $x s$ ys
which contains the common elements of the lists $x s$ and $y s$ - i.e. their intersection.

Remember:
filter $p x$ s is the list of those elements x of $x s$ where $p(x)=$ true.

Higher-order list functions: tryF ind

tryFind $p x s= \begin{cases}\text { Some } x & \text { for an element } x \text { of } x s \text { with } p(x)=\text { true } \\ \text { None } & \text { if no such element exists }\end{cases}$

```
let rec tryFind p = function
        x::xs when p x -> Some x
        _::xs -> tryFind p xs
        -> None ;;
val tryFind : ('a -> bool) -> 'a list -> 'a option
```

tryFind (fun $x \rightarrow x>3$) $[1 ; 5 ;-2 ; 8] ;$;
val it : int option $=$ Some 5

Folding a function over a list (I)

Example: sum of norms of geometric vectors:

```
let norm(x1:float,y1:float) = sqrt(x1*x1+y1*y1); ;
val norm : float * float -> float
let rec sumOfNorms = function
    [] -> 0.0
    v::vs -> norm v + sumOfNorms vs;;
val sumOfNorms : (float * float) list -> float
let vs = [(1.0,2.0); (2.0,1.0); (2.0, 5.5)];;
val vs : (float * float) list
    =[(1.0, 2.0); (2.0, 1.0); (2.0, 5.5)]
sumOfNorms vs;;
val it : float = 10.32448591
```


Folding a function over a list (II)

```
let rec sumOfNorms = function
    |] -> 0.0
    v::vs -> norm v + sumOfNorms vs;;
```

Let $f v s$ abbreviate norm $v+s$ in the evaluation:

$$
\begin{array}{ll}
& \text { sumOfNorms }\left[v_{0} ; v_{1} ; \ldots ; v_{n-1}\right] \\
\rightsquigarrow & \text { norm } v_{0}+\left(\text { sumOfNorms }\left[v_{1} ; \ldots ; v_{n-1}\right]\right) \\
= & f v_{0}\left(\text { sumOfNorms }\left[v_{1} ; \ldots ; v_{n-1}\right]\right) \\
\rightsquigarrow & f v_{0}\left(f v_{1}\left(\text { sumOfNorms }\left[v_{2} ; \ldots ; v_{n-1}\right]\right)\right) \\
\vdots & \\
\rightsquigarrow & f v_{0}\left(f v_{1}\left(\cdots\left(f v_{n-1} 0.0\right) \cdots\right)\right)
\end{array}
$$

This repeated application of f is also called a folding of f.

Many functions follow such recursion and evaluation schemes

Higher-order list functions: foldBack (1)

Suppose that \otimes is an infix function. Then

$$
\begin{aligned}
& \text { foldBack }(\otimes) \quad\left[a_{0} ; a_{1} ; \ldots ; a_{n-2} ; a_{n-1}\right] e_{b} \\
& =a_{0} \otimes\left(a_{1} \otimes\left(\ldots\left(a_{n-2} \otimes\left(a_{n-1} \otimes e_{b}\right)\right) \ldots\right)\right) \\
& \text { List.foldBack }(+)[1 ; 2 ; 3] 0=1+(2+(3+0)=6 \\
& \text { List.foldBack }(-)[1 ; 2 ; 3] 0=1-(2-(3-0))=2
\end{aligned}
$$

Using the cons operator gives the append function @ on lists:

```
foldBack (fun x rst -> x::rst) [ (X0; X1; ...; X Xn-1] ys
    = ( }0::(\mp@subsup{X}{1}{}:: ... ::( ( Xn-1::ys) ... )) 
    = [\mp@subsup{x}{0}{\prime}; \mp@subsup{x}{1}{}; ...; \mp@subsup{x}{n-1}{\prime]}]@ ys
```

so we get:

```
let (@) xs ys = List.foldBack (fun x rst -> x::rst) xs ys;
val ( @ ) : 'a list -> 'a list -> 'a list
[1;2] @ [3;4] ;;
val it : int list = [1; 2; 3; 4]
```


Declaration of foldBack

```
let rec foldBack f xlst e =
    match xlst with
        x::xs -> f x (foldBack f xs e)
        [] -> e ;;
val foldBack : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
let sumOfNorms vs = foldBack (fun v s -> norm v + s) vs 0.0;;
let length xs = foldBack (fun _ n -> n+1) xs 0;;
let map f xs = foldBack (fun x rs -> f x :: rs) xs [];;
```


Exercise: union of sets

Let an insertion function be declared by

```
let insert x ys = if isMember x ys then ys else x::ys;;
```

Declare a union function on sets, where a set is represented by a list without duplicated elements.

Remember:

$$
\text { foldBack }(\oplus)\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right] b \rightsquigarrow x_{1} \oplus\left(x_{2} \oplus \cdots \oplus\left(x_{n} \oplus b\right) \cdots\right)
$$

Higher-order list functions: fold (1)

Suppose that \oplus is an infix function.
Then the fold function has the definitions:

$$
\begin{aligned}
& \text { fold }(\oplus) \quad e_{a} \quad\left[b_{0} ; b_{1} ; \ldots ; b_{n-2} ; b_{n-1}\right] \\
& \quad=\left(\left(\ldots\left(\left(e_{a} \oplus b_{0}\right) \oplus b_{1}\right) \ldots\right) \oplus b_{n-2}\right) \oplus b_{n-1}
\end{aligned}
$$

i.e. it applies \oplus from left to right.

Examples:

$$
\begin{aligned}
\text { List.fold (-) } 0[1 ; 2 ; 3] & =((0-1)-2)-3
\end{aligned}=-6
$$

Higher-order list functions: fold (2)

```
let rec fold \(f e=\) function
    x::xs \(\rightarrow\) fold \(f(f e x) x s\)
    [] \(->\) e ; ;
val fold : ('a \(->\) 'b \(->\) 'a) \(->\) 'a \(\rightarrow\) 'b list \(->\) ' \(a\)
```

Using cons in connection with fold gives the reverse function:

$$
\text { let rev xs }=\text { fold (fun rs } x \text {-> x::rs) [] xs; ; }
$$

This function has a linear execution time:

	rev [1; 2 ; 3]			
\rightsquigarrow	fold	(fun \ldots)	[]	$[1 ; 2 ; 3]$
\rightsquigarrow	fold	(fun \ldots)	$(1::[])$	$[2 ; 3]$
\rightsquigarrow	fold	(fun \ldots)	$[1]$	$[2 ; 3]$
\rightsquigarrow	fold	(fun \ldots)	$(2::[1])$	$[3]$
\rightsquigarrow	fold	(fun \ldots)	$[2 ; 1]$	$[3]$
\rightsquigarrow	fold	(fun...$)$	$(3::[2 ; 1])$	[]
\rightsquigarrow	fold	(fun \ldots)	$[3 ; 2 ; 1]$	[]
\rightsquigarrow	$[3 ; 2 ; 1]$			

Summary

- Many recursive declarations follows the same schema.

For example:

Succinct declarations achievable using higher-order functions

Contents

- Higher-order list functions (in the library)
- map
- exists, forall, filter, tryFind
- foldBack, fold

Avoid (almost) identical code fragments by parameterizing functions with functions

