02157 Functional Programming

Lecture 2: Functions, Basic Types and Tuples

Michael R. Hansen

$$
\begin{aligned}
& f(x+\Delta x)=\sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i \prime}(x) \\
& \text { ical Modelling }
\end{aligned}
$$

Outline

- A further look at functions, including higher-order (or curried) functions
- A further look at basic types, including characters, equality and ordering
- A first look at polymorphism
- A further look at tuples and patterns
- A further look at lists and list recursion

Goal: By the end of the day you are acquainted with a major part of the F \# language.

Anonymous functions

Function expressions with general patterns, e.g.

```
function
    | 2 -> 28 // February
    4|6|9|11 -> 30 // April, June, September, November
    -> 31 // All other months
;;
```

Simple function expressions, e.g.

```
fun r -> System.Math.PI * r * r ; ;
val it : float -> float = <fun:clo@10-1>
it 2.0 ;;
val it : float = 12.56637061
```


Anonymous functions

Simple functions expressions with currying

$$
\operatorname{fun} x y \cdots z \rightarrow e
$$

with the same meaning as

$$
\text { fun } x \rightarrow(\text { fun } y \rightarrow(\cdots(\text { fun } z \rightarrow e) \cdots))
$$

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
```

Functions are first class citizens:
the argument and the value of a function may be functions

Function declarations

A simple function declaration:

$$
\text { let } f x=e \quad \text { means } \quad \text { let } f=\text { fun } x \rightarrow e
$$

For example: let circleArea $r=$ System.Math.PI *r*r A declaration of a curried function

$$
\text { let } f x y \cdots z=e
$$

has the same meaning as:

$$
\text { let } f=\operatorname{fun} x \rightarrow(\text { fun } y \rightarrow(\cdots(\text { fun } z \rightarrow e) \cdots))
$$

For example:

```
let addMult x y = x + x*y;;
val addMult : int -> int -> int
let f = addMult 2;;
val f : (int -> int)
f 3;;
val it : int = 8
```


An example

Suppose that we have a cube with side length s, containing a liquid with density ρ. The weight of the liquid is then given by $\rho \cdot s^{3}$:

```
let weight ro s = ro * s ** 3.0;;
val weight : float }->>\mathrm{ float }->\mathrm{ float
```

We can make partial evaluations to define functions for computing the weight of a cube of either water or methanol:

```
let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)
waterWeight 2.0;;
val it : float = 8000.0
let methanolWeight = weight 786.5 ; ;
val methanolWeight : (float -> float)
methanolWeight 2.0;;
val it : float = 6292.0
```


Patterns

We have in previous examples exploited the pattern matching in function expression:

$$
\begin{array}{rll}
\text { function } \\
\begin{array}{rlll}
\mid \text { pat }_{1} & \rightarrow & e_{1} \\
& \vdots & \\
\mid \text { pat }_{n} & \rightarrow & e_{n}
\end{array}
\end{array}
$$

A match expression has a similar pattern matching feature:

$$
\begin{aligned}
\text { match } & e \text { with } \\
\mid p_{1} t_{1} & \rightarrow \\
& e_{1} \\
& \vdots \\
\text { pat } & \\
\rightarrow & e_{n}
\end{aligned}
$$

The value of e is computed and the expressing e_{i} corresponding to the first matching pattern is chosen for further evaluation.

Example

Alternative declarations of the power function:

$$
\begin{aligned}
& \text { let rec power }=\text { function } \\
& \left\lvert\, \begin{array}{l}
(-, 0)->1.0 \\
(x, n)->x * \operatorname{power}(x, n-1) ; ;
\end{array}\right.
\end{aligned}
$$

are

$$
\begin{aligned}
& \text { let rec power } a=\text { match a with } \\
& \qquad \begin{array}{l}
(-, 0)->1.0 \\
(x, n)->x * \operatorname{power}(x, n-1) ; ;
\end{array}
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { let rec power }(\mathrm{x}, \mathrm{n})=\operatorname{match} \mathrm{n} \text { with } \\
& \qquad \left\lvert\, \begin{array}{l}
0->1.0 \\
\mathrm{n}^{\prime}->\mathrm{x} * \operatorname{power}\left(\mathrm{x}, \mathrm{n}^{\prime}-1\right) ; \text {; } ;
\end{array}\right.
\end{aligned}
$$

Infix functions

The prefix version (\oplus) of an infix operator \oplus is a curried function.
For example:

```
(+); ;
val it : (int -> int -> int) = <fun:it@l>
```

Arguments can be supplied one by one:

```
let plusThree = (+) 3; ;
val plusThree : (int -> int)
plusThree 5;;
val it : int = 8
```


Function composition: $(f \circ g)(x)=f(g(x))$

For example, if $f(y)=y+3$ and $g(x)=x^{2}$, then $(f \circ g)(z)=z^{2}+3$.
The infix operator << in F\# denotes functional composition:

$$
\begin{array}{ll}
\text { let } f \mathrm{y}=\mathrm{y}+3 ; ; & / / \mathrm{f}(\mathrm{y})=\mathrm{y}+3 \\
\text { let } \mathrm{g} \mathrm{x}=\mathrm{x} * \mathrm{x} ; \boldsymbol{;} & / / \mathrm{g}(\mathrm{x})=\mathrm{x} * \mathrm{x} \\
\text { let } \mathrm{h}=\mathrm{f} \ll \mathrm{~g} ; \mathbf{;} & / / \mathrm{h}=(\mathrm{f} \circ \mathrm{~g}) \\
\text { val } \mathrm{h}: \text { int }->\text { int } & \\
\mathrm{h} 4 ; ; \\
\text { val it }: \text { int }=19 & / / \mathrm{h}(4)=(\mathrm{f} \circ \mathrm{~g})(4)
\end{array}
$$

Using just anonymous functions:

```
((fun y -> y+3) << (fun x -> x*x)) 4;;
val it : int = 19
```

Type of (<<) ?

Basic Types: equality and ordering

The basic types: integers, floats, booleans, and strings type were covered last week. Characters are considered on the next slide. For these types (and many other) equality and ordering are defined.

In particular, there is a function:

$$
\text { compare } x y=\left\{\begin{aligned}
>0 & \text { if } x>y \\
0 & \text { if } x=y \\
<0 & \text { if } x<y
\end{aligned}\right.
$$

For example:

```
compare 7.4 2.0;;
val it : int = 1
compare "abc" "def";;
val it : int = -3
compare 1 4;;
val it : int = -1
```


Pattern matching with guards

It is often useful to have when guards in patterns:

```
let ordText x y = match compare x y with
    | l when t > 0 l> "greater"
ordText "abc" "Abc";;
val it : bool = true
```

The first clause is only taken when $t>0$ evaluates to true.

Polymorphism and comparison

The type of ordText

```
val ordText : 'a -> 'a -> string when 'a : comparison
```

contains

- a type variable ' a, and
- a type constraint 'a : comparison

The type variable can be instantiated to any type provided comparison is defined for that type. It is called a polymorphic type.

For example:

```
ordText true false;;
val it : string = "greater"
ordText (1,true) (1,false);;
val it : string = "greater"
ordText sin cos;;
...'('a -> 'a)' does not support the 'comparison' ...
```

Comparison is not defined for types involving functions.

Characters

Type name: char
Values 'a', ' ', ' \'' (escape sequence for ')
Examples

```
let isLowerCaseVowel ch =
    System.Char.IsLower ch &&
        (ch='a' || ch='e' || ch = 'i'' | ch='o' || ch = 'u'); ;
val isLowerCaseVowel : char -> bool
isLowerCaseVowel 'i';;
val it : bool = true
isLowerCaseVowel 'I';;
val it : bool = false
```

The i 'th character in a string is achieved using the "dot"-notation:

```
"abc".[0]; ;
val it : char = 'a'
```


Overloaded Operators and Type inference

A squaring function on integers:

Declaration	Type	
let square $\mathrm{x}=\mathrm{x} * \mathrm{x}$	int -> int	Default

A squaring function on floats: square: float -> float

Declaration	
let square $(x: f l o a t)=x * x$	Type the argument
let square $x: f l o a t=x * x$	Type the result
let square $x=x * x:$ float	Type expression for the result
let square $x=x: f l o a t * x$	Type a variable

You can mix these possibilities

Tuples

An ordered collection of n values $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called an n-tuple

Examples

$(3$, false);	
val it $=(3$, false) : int * bool	2-tuples (pairs)
$(1, ~ 2, ~(" a b ", t r u e)) ; ~$ val it $=(1, ~ 2, ~(" a b ", ~ t r u e)) ~: ? ~$	3-tuples (triples)

Equality defined componentwise, ordering lexicographically

```
(1, 2.0, true) = (2-1, 2.0*1.0, 1<2);;
val it = true : bool
compare (1, 2.0, true) (2-1, 3.0, false);;
val it : int = -1
provided = is defined on components
```


Tuple patterns

Extract components of tuples

```
let \(\left(\left(x, \_\right),\left(\ldots, y, \_\right)\right)=((1\), true), ("a", "b", false)); ;
val \(x\) : int \(=1\)
val \(y\) : string \(=" b "\)
```

Pattern matching yields bindings

Restriction

$$
\text { let }(x, x)=(1,1) ; \text {; }
$$

$$
\text { .. } E R R O R \ldots{ }^{\prime} . .{ }^{\prime} \text { is bound twice in this pattern }
$$

Local declarations

Examples

```
let g x =
    let a = 6
    let f y = y + a
    x + f x;;
val g : int -> int
g 1;;
val it : int = 8
```

Note: a and f are not visible outside of g

Declaration of types and exceptions

Example: Solve $a x^{2}+b x+c=0$

```
type Equation = float * float * float
type Solution = float * float
exception Solve; (* declares an exception *)
```

let $\operatorname{solve}(a, b, c)=$
if $b * b-4.0 * a * c<0.0| | a=0.0$ then raise Solve
else $((-b+\operatorname{sqrt}(b * b-4.0 * a * c)) /(2.0 * a)$,
$(-\mathrm{b}-\operatorname{sqrt}(\mathrm{b} * \mathrm{~b}-4.0 \star \mathrm{a} * \mathrm{c})) /(2.0 \star \mathrm{a}))$; ;
val solve : float * float * float $->$ float * float

The type of the function solve is (the expansion of)
Equation -> Solution
d is declared once and used 3 times readability, efficiency

Solution using local declarations

```
let solve(a,b,c) =
    let d = b*b-4.0*a*c
    if d< 0.0 || a = 0.0 then raise Solve else
    ((-b + sqrt d)/(2.0*a),(-b - sqrt d)/(2.0*a));;
let solve(a,b,c) =
    let sqrtD =
        let d = b*b-4.0*a*c
        if d< 0.0 || a = 0.0 then raise Solve
        else sqrt d
    ((-b + sqrtD)/(2.0*a),(-b - sqrtD)/(2.0*a));;
Indentation matters
```


Example: Rational Numbers

Consider the following signature, specifying operations and their types:

Specification	Comment
type qnum $=$ int * int	rational numbers
exception QDiv	division by zero
mkQ: int * int \rightarrow qnum	construction of rational numbers
..$+:$ qnum * qnum \rightarrow qnum	addition of rational numbers
...$:$ qnum * qnum \rightarrow qnum	subtraction of rational numbers
..$:$ qnum * qnum \rightarrow qnum	multiplication of rational numbers
...$:$ qnum * qnum \rightarrow qnum	division of rational numbers
.$=.:$ qnum * qnum \rightarrow bool	equality of rational numbers
toString: qnum \rightarrow string	String representation of rational numbers

Intended use

$$
\begin{aligned}
& \text { let } q 1=m k Q(2,3) ; ; \\
& \text { let } q 2=m k Q(12,-27) ; ; \\
& \text { let } q 3=m k Q(-1,4) . * q 2 .-. q 1 ; ; \\
& \text { let } q 4=q 1 .-q 2 . / . q 3 ; ;
\end{aligned}
$$

$$
q_{1}=\frac{2}{3}
$$

$$
q_{2}=-\frac{12}{27}=-\frac{4}{9}
$$

$$
q_{3}=-\frac{1}{4} \cdot q_{2}-q_{1}=-\frac{5}{9}
$$

$$
q_{4}=q_{1}-q_{2} / q_{3}=\frac{2}{3}-\frac{-4}{9} / \frac{-5}{9}
$$

toString q4;;

$$
\text { val it : string }="-2 / 15 " \quad=-\frac{2}{15}
$$

Operators are infix with usual precedences

Note: Without using infix:

$$
\text { let q3 }=(.-.)((. * .)(m k Q(-1,4)) \quad \text { q2) } q 1 ; \text {; }
$$

Representation: $(a, b), b>0$ and $\operatorname{gcd}(a, b)=1$

Example $-\frac{12}{27}$ is represented by $(-4,9)$
Greatest common divisor (Euclid's algorithm)

Function to cancel common divisors:

```
let \(\operatorname{canc}(p, q)=\)
    let \(\operatorname{sign}=\) if \(p * q<0\) then -1 else 1
    let \(a p=a b s p\)
    let \(a q=a b s q\)
    let \(d=\operatorname{gcd}(a p, a q)\)
    (sign * (ap / d), aq / d); ;
canc (12,-27); ;
val it : int * int \(=(-4,9)\)
```


Program for rational numbers

Declaration of the constructor:

```
exception QDiv;;
let mkQ = function
    | (_,0) }\begin{array}{ll}{\mathrm{ pr }}&{-> raise QDiv}\\{\mathrm{ -> canc pr;;}}
```

Rules of arithmetic:

$$
\begin{array}{llll}
\frac{a}{b}+\frac{c}{d} & =\frac{a d+b c}{b d} & \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d} \\
\frac{a}{b} \cdot \frac{c}{d} & =\frac{a c}{b d} & \frac{a}{b} / \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c} \quad \text { when } c \neq 0 \\
\frac{a}{b}=\frac{c}{d} & =a d=b c & &
\end{array}
$$

Program corresponds direly to these rules

```
let (.+.) (a,b) (c,d) = canc(a*d + b*c, b*d);;
let (.-.) (a,b) (c,d) = canc(a*d - b*c, b*d);;
let (.*.) (a,b) (c,d) = canc (a*c, b*d); ;
let (./.) (a,b) (c,d) = (a,b) .*. mkQ(d, c); ;
let (.=.) (a,b) (c,d) = (a,b) = (c,d);;
```

Note: Functions must preserve the invariant of the representation

Pattern matching and recursion

Consider unz ip that maps a list of pairs to a pair of lists:

$$
\begin{aligned}
& \text { unzip }\left(\left[\left(x_{0}, y_{0}\right) ;\left(x_{1}, y_{1}\right) ; \ldots ;\left(x_{n-1}, y_{n-1}\right)\right]\right. \\
& \quad=\left(\left[x_{0} ; x_{1} ; \ldots ; x_{n-1}\right],\left[y_{0} ; y_{1} ; \ldots ; y_{n-1}\right]\right)
\end{aligned}
$$

with the declaration:

```
let rec unzip = function
    | [] -> ([],[])
    | (x,y)::rest -> let (xs,ys) = unzip rest
        (x::xs,y::ys);;
unzip [(1,"a");(2,"b")];;
val it : int list * string list = ([1; 2], ["a"; "b"])
```

Notice

- pattern matching on result of recursive call
- unzip is polymorphic. Type?
- unzip is available in the List library.

Summary

You are acquainted with a major part of the F\# language.

- Higher-order (or curried) functions
- Basic types, equality and ordering
- Polymorphism
- Tuples
- Patterns
- A look at lists and list recursion

