
02157
Functional
Program-

ming

Michael R. Hansen
02157 Functional Programming
Lecture 12:
Imperative, Asynchronous, Parallel and Monadic Programming

A short story

Michael R. Hansen

1 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Imperative programming,

• asynchronous programming,

• parallel programming, and

• monadic programming

by simple examples.

2 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

What is this?

let ...
let rec visit u =

color.[u] <- Gray ; time := !time + 1; d.[u] <- !time
let rec h v = if color.[v] = White

then pi.[v] <- u
visit v

List.iter h (adj.[u])
color.[u] <- Black
time := !time + 1
f.[u] <- !time

let mutable i = 0
while i < V do

if color.[i] = White
then visit i
i <- i + 1

(d, f, pi);;

3 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Depth-First Search of directed graphs

”Direct” translation of pseudocode from Corman, Leiserson, Rivest.

Remaining parts:

type color = White | Gray | Black;;

let dfs(V,adj: int list[]) =
let color = Array.create V White
let pi = Array.create V -1
let d = Array.create V -1
let f = Array.create V -1
let time = ref 0
let rec visit u =

....

let mutable i = 0
while i < V do

....
(d, f, pi);;

4 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

DFS – an example

val (d,f,pi) = dfs(g6);

d : Discovery times
f : Finishing times
pi : Predecessors

A node i is marked di/fi 10 / 11

0 1 2

3 4 5

1 / 8 9 / 122 / 7

4 / 5 3 / 6

5 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Elements of imperative F#

A store is a table associating values vi with locations li :

l1 7→ v1

l2 7→ v2

. . .
ln 7→ vn

6 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Allocation of a new cell in the store

let mutable x = 1;;
val mutable x : int = 1

let mutable y = 3;;
val mutable y : int = 3

Results in the following environment and store:

Environment Store
[

x 7→ l1
y 7→ l2

] [

l1 7→ 1
l2 7→ 3

]

A similar effect is achieved by:

let x = ref 1;;
let y = ref 3;;

7 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Value in a location in the store and Assignment

Given the following environment and store:

Environment Store
[

x 7→ l1
y 7→ l2

] [

l1 7→ 1
l2 7→ 3

]

The assignment x <- y+2 results in the new store:
[

l1 7→ 5
l2 7→ 3

]

A similar effect is achieved by the assignment x := !y + 2

• The assignment x := ... is used

• The explicit “contentsOf” !y is necessary

when let x = ref ... and let y = ref ... are used

8 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Arrays

• ”’a [] is the type of one-dimensional, mutable, zero-based
constant-time-access arrays with elements of type ’a.”

Array.create n v creates an array with n entries all containing v

Examples:

let a = Array.create 5 "a";;
val a : string [] = [|"a"; "a"; "a"; "a"; "a"|]

a.[2] <- "b";;
val it : unit = ()

a;;
val it : string [] = [|"a"; "a"; "b"; "a"; "a"|]

a.[0];;
val it : string = "a"

9 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Graph representation: neighbour-list

let adj =
Array.ofList [[1;3];

[4];
[4;5];
[1];
[3];
[5]] ;;

let g6 = (6,adj);;

g6;;
val it : int * int list []

= (6, [|[1; 3]; [4]; [4; 5]; [1]; [3]; [5]|])

5

0 1 2

3 4

10 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Inspecting results

val (d,f,pi) = dfs(g6);

d;; (* Discovery times *)
val it : int []
= [|1; 2; 9; 4; 3; 10|]

f;; (* Finishing times *)
val it : int []
= [|8; 7; 12; 5; 6; 11|]

pi;; (* Predecessors *)
val it : int []

= [|-1; 0; -1; 4; 1; 2|]

10 / 11

0 1 2

3 4 5

1 / 8 9 / 122 / 7

4 / 5 3 / 6

11 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

• F# is an excellent imperative language

• the combination of imperative and applicative constructs is
powerful

12 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Asynchronous computations by example

open System;;
open System.Net;;
let downLoadDTUcomp =
async {

let webCl = new WebClient()
let! html = webCl.AsyncDownloadString(

Uri "http://www.dtu.dk")
return html} ;;

val downLoadDTUcomp : Async<string>

1 Create a WebClient object.
2 Initiate the download using AsyncDownloadString. This

function makes the task an wait item and will eventually
terminate when the download has completed.
It uses no thread while waiting.

3 At termination the rest of the computation is re-started with the
identifier html bound to the result.

4 The expression return html returns the value bound to html,
that is, the result of the download.

13 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Parallel downloads of web pages

let downloadComp url =
let webCl = new WebClient()
async {let! html = webCl.AsyncDownloadString(Uri url)

return html};;

A computation for parallel downloads:

let downlArrayComp (urlArr: string[]) =
Async.Parallel (Array.map downloadComp urlArr);;

val downlArrayComp : string [] -> Async<string []>

Activation of the computation:

let paralDTUandMScomp =
downlArrayComp

[|"http://www.dtu.dk"; "http://www.microsoft.com"|];;

Array.map (fun (s:string) -> s.Length)
(Async.RunSynchronously paralDTUandMScomp);;

val it : int [] = [|45199; 1020|]
Real: 00:00:02.235, CPU: 00:00:00.046

Uses limited CPU time.
14 DTU Informatics, Technical University of Denmark

Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,
A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Parallel computation – exploiting multiple cores

type BinTree<’a> = | Leaf
| Node of BinTree<’a>*’a*BinTree<’a>;;

let rec exists p t =
match t with
| Leaf -> false
| Node(_,v,_) when p v -> true
| Node(tl,_,tr) -> exists p tl || exists p tr;;

Sequential search in big trees:

let rec genTree n range =
if n=0 then Leaf
else let tl = genTree (n-1) range

let tr = genTree (n-1) range
Node(tl, gen range, tr);;

let t = genTree 25 10000;;

exists (fun n -> isPrime n && n>10000) t;;
Real: 00:01:22.818, CPU: 00:01:22.727
val it : bool = false

15 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Parallel search in big trees

open System.Threading.Tasks;;
let rec parExistsDepth p t n =
if n=0 then exists p t else
match t with
| Leaf -> false
| Node(_,v,_) when p v -> true
| Node(tl,_,tr) ->

let b1 = Task.Factory.StartNew(
fun () -> parExistsDepth p tl (n-1))

let b2 = Task.Factory.StartNew(
fun () -> parExistsDepth p tr (n-1))

b1.Result||b2.Result;;
val parExistsDepth: (’a->bool)->BinTree<’a>->int->bool

Experiments show that the best result is obtained using depth 4:

parExistsDepth (fun n -> isPrime n && n>10000) t 4;;
Real: 00:00:35.303, CPU: 00:02:18.669

The speedup is approximately 2.3.
16 DTU Informatics, Technical University of Denmark

Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,
A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Defining computation expressions

also called workflows or monads.

Purpose: hide low-level details in a builder class.

Expression evaluation with error handling:

let I e env =
let rec eval = function

| Num i -> Some i
| Var x -> Map.tryFind x env
| Add(e1,e2) -> match (eval e1, eval e2) with

| (Some v1, Some v2) -> Some(v1+v2)
| _ -> None

| Div(e1,e2) -> match (eval e1, eval e2) with
| (_ , Some 0) -> None
| (Some v1, Some v2) -> Some(v1/v2)
| _ -> None

eval e;;

How can the Some/None manipulations be hidden?

17 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Declaring a computation builder object

Define the computation type:

type maybe<’a> = option<’a>;;

Define a computation builder class:

type MaybeClass() =
member bld.Bind(m:maybe<’a>,f:’a->maybe<’b>):maybe<’b>

match m with | None -> None
| Some a -> f a

member bld.Return a:maybe<’a> = Some a
member bld.ReturnFrom m:maybe<’a> = m
member bld.Zero():maybe<’a> = None;;

Declare a computation builder object:

let maybe = MaybeClass();;

Many improvements are possible, e.g. to delay computations

18 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Using the builder object

The Some/None manipulations are now hidden

let I e env =
let rec eval = function

| Num i -> maybe {return i}
| Var x -> maybe {return! Map.tryFind x env}
| Add(e1,e2) -> maybe {let! v1 = eval e1

let! v2 = eval e2
return v1+v2}

| Div(e1,e2) -> maybe {let! v2 = eval e2
if v2<>0 then

let! v1 = eval e1
return v1/v2}

eval e;;
val I : expr -> Map<string,int> -> maybe<int>

19 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

F# supports a rich collection of different programming paradigms

20 DTU Informatics, Technical University of Denmark
Lecture 12:, Imperative, Asynchronous, Parallel and Monadic Programming,

A short story MRH 29/11/2012

