02157 Functional programming Michael R. Hansen
DTU Informatics
November 24, 2011

Exercise: Lambda-calculus interpreter

In this exercise you shall make a simple interpreter for the untyped lambda calculus, as
introduced in the third lecture on October 28, 2011.

Solve this exercise by completing the program skeleton lambdaIntpSkeleton.fs available
on the homepage.

A lambda-calculus based language

The set of A-terms or just terms A is generated from a set V' of variables by the rules:

e ifz €V, thenz e A atom
o ifx € Vand t € A, then (Az.t) € A abstraction
o if t,to € A, then (t1t3) € A application

In addition to that we shall allow constants in order to express values and operations in
a convenient manner. We will use constants for numbers: 0,1, ..., truth values: true and
false, and operations such as 4+, —, -, = and a conditional.

The program skeleton contains a type lambda so that the following are values of type
lambda:

e V "x" represents the variable x,

e 0 "+" and 0 "ite" represent the operation '+’ and the if-then-else conditional, re-
spectively. The uppercase letter '0’ is the constructor for operations.

I 7 and B false represent the integer 7 and the truth value false, respectively.

L("x", V "x") represents the abstraction: \z.x, and

ACL("x", V "x"), I 7) represents the application ((Az.x)7).



Free and bound variables

An occurrence of a variable z is bound in a lambda term ¢, if z occurs within the scope of
an abstraction A\z.M in t; otherwise x is free in t.

Declare a function free: lambda -> Set<string>, which extracts the set of free variables
from a lambda term.

Substitution

Declare a function subst t x t' for substituting all free occurrences of a variable x in a
term ¢ with the term ¢’. This substitution is written ¢[t'/x] on the slides.

This function should rename bound variables to avoid clashes, i.e. a situation where a free
variables of ¢’ becomes bound by an abstraction in ¢. Please consult the slides for examples.
The program skeleton on file sharing contains a function nextVar which can generate a
new, fresh variable name to be used when renaming a bound variable.

Normal order reduction

By a redex we shall understand a term which can be reduced by a beta-reduction or a term
which can be reduced by applying an operation to values. We shall consider the following
redeces and reductions:

e The redex: ((=,a),b) is reduced to the truth value a = b, where a and b are integers.
Similarly for other relations such as > and >.

e The redex: ((+,a),b) is reduced to a + b, where a and b are integers. Similarly for
other operations such as — and -.

e The redex: (((ite,true),t;),ts) is reduced to ;.
e The redex: (((ite,false),t1),ts) is reduced to ts.

e The redex: ((Ax.t),t’) is reduced to t[t'/x]. This is a beta-reduction.

Examples of reductions, using the F# representation of terms, are:

1. ACAC0O "=", I 1), I 2) reduces to (B false).

2. For ACA(O "+", I 1), I 2) reduces to (I 3).



You should implement the normal-order reduction strategy in the interpreter. In this
strategy the leftmost, outermost redex (the same as the textually leftmost redex) is chosen
at each reduction step until no further reduction is possible.

If a term can be reduced to a normal form, i.e. a term containing no redeces, then the
normal-order reduction will terminate. ”Lazy” functional languages like Haskell are based
on such a strategy.

Remark: The "eager” language F'# is based on applicative-order reduction, where the inner,
leftmost redex is reduced first. In such a strategy an argument to a function is evaluated
just once; but reduction may fail to terminate even in cases where a normal form exists.
We will not consider applicative-order reductions here.

e Declare a function red: lambda — lambda option that reduces the leftmost, out-
ermost redex (the same as the textually leftmost redex) of a term, if such redex exists.
This function makes at most one reduction. The result is None if the term has no
redex.

e Declare a function reduce: lambda — lambda for the normal-order reduction strat-
egy.
Examples

e Test your interpreter on a few simple examples.

e Make a declaration of the fixpoint combinator due to Turing;:

Y = Az Ayy (zzy)) Az dy.y (zoy))
e Make a declaration for the function: F' = Af.An.if n =0 then 1 else nx f(n —1).

e Compute n! on some examples using the interpreter.



