
CS3 Functional Programming and Specification Lecture Note 5, 1 December 2005

Proving that a structure meets its specification

The problem of verifying that a structure without substructures satisfies its specification is just
the same as the problem of proving that all the functions it contains meet their specifications.
So, for example, proving that Array satisfies its specification would be a matter of showing
that the functions satisfy the five axioms in ARRAY.

If we have a structure with substructures, there are two stages in the proof:

1. We have to show that all the substructures meet their specifications. (Note that the
substructures may themselves have substructures.)

2. The functions in the structure must be shown to satisfy their specifications.

The order in which these are done is irrelevant. But concerning (2): since these functions may
make use of functions in the substructures, these proofs will often need to use information
about the substructures.

An important point is that it is normally most convenient to use the specifications of
the functions in the substructures in these proofs rather than the code of these functions.
First, the specification is normally at a more abstract level than the code, defining what
the function does — which is interesting in such proofs — rather than how it works —
which is not. Second, this allows a different substructure (satisfying the same specification
but possibly using a different data representation or different algorithms) to be substituted
without affecting the correctness of the proof. Third, this is essential if opaque signature
ascription is used: clients can only make use of what is written in the signature, not the extra
information that is in the code, and that fact needs to be reflected in proofs.

Recall the Histogram example:

signature HISTOGRAM =
sig

structure A : ARRAY
type histogram
val create : histogram
val incrementcount : int * histogram -> histogram
val display : histogram -> A.array
local
val count : int * histogram -> int
axiom Forall n => count(n,create) == 0
axiom Forall (n,h) => count(n,incrementcount(n,h)) == 1 + count(n,h)
axiom Forall (n,m,h) =>

n<>m implies count(n,incrementcount(m,h)) == count(n,h)
in
axiom Forall (n,h) => A.retrieve(n,display h) == count(n,h)

end
end

structure Histogram :> HISTOGRAM = ?

This specification can be implemented by representing histograms as arrays and using the
identity function for display:

structure Histogram :> HISTOGRAM =
struct

1



structure A : ARRAY = Array
type histogram = A.array
val create = A.empty
fun incrementcount(n,h) = A.put(n, 1 + A.retrieve(n,h), h)
fun display h = h

end

Suppose that we have already shown that Histogram.A (i.e. Array) satisfies ARRAY. To prove
that Histogram satisfies HISTOGRAM, we then have to show that the functions and constants
in Histogram (create, incrementcount and display, defined by the code in the body of
Histogram), satisfy the axiom in HISTOGRAM:

Forall (n,h) => A.retrieve(n,display h) == count(n,h)

where count is defined by the “hidden” axioms in HISTOGRAM, namely:

Forall n => count(n,create) == 0
Forall (n,h) => count(n,incrementcount(n,h)) == 1 + count(n,h)
Forall (n,m,h) => n<>m implies count(n,incrementcount(m,h)) == count(n,h)

and A satisfies ARRAY.

Specifying functors Axioms in signatures can also be used to specify functors. The only
difference is that a functor has both a parameter signature and a result signature, and so each
functor is associated with two specifications.

The specification in Practical 3 of a sorting functor (with the gap there filled in) is an
example:

signature PO =
sig

type t
val le : t * t -> bool
axiom Forall x => le(x,x)
axiom Forall (x,y,z) => le(x,y) andalso le(y,z) implies le(x,z)
axiom Forall (x,y) => le(x,y) andalso le(y,x) implies x==y
axiom Forall (x,y) => le(x,y) orelse le(y,x)

end

signature SORT =
sig

structure OBJ : PO
local
val count : ’a * ’a list -> int
axiom Forall a => count(a,nil) = 0
axiom Forall (a,l) => count(a,a::l) = 1+count(a,l)
axiom Forall (a,b,l) => a=/=b implies count(a,b::l) = count(a,l)
val permutation : ’a list * ’a list -> bool
axiom Forall (l,l’) =>
permutation(l,l’) = (Forall x => count(x,l) = count(x,l’))

val ordered : OBJ.t list -> bool
axiom Forall l =>
ordered l iff
(Forall (a,b,c,x,y) => l==a@[x]@b@[y]@c implies OBJ.le(x,y))

in

2



val sort : OBJ.t list -> OBJ.t list
axiom Forall l => permutation(l,sort l)
axiom Forall l => ordered(sort l)

end
end

functor Sort(X : PO) :> SORT where type OBJ.t=X.t = ?

The axioms in PO require that the function le satisfies the properties of a total order relation.
(So PO isn’t a very good name – oops!) A sorting program wouldn’t be expected to work for
arbitrary choices of le.

The axioms in SORT specify the properties we want sort to satisfy, under the assumption
that le satisfies the properties in PO. The most abstract way to specify sort is to require
that the output is a permutation of the input, and that the output is ordered according to
OBJ.le. Thus we specify permutation and ordered as auxiliary functions. An easy way to
specify permutation is using a function to count the number of occurrences of an element in
a list, which is the purpose of the function count.

One way of implementing Sort, using heapsort, is given in Practical 3. Another way is
using the quicksort algorithm. Here we choose an element of the list, partition the remaining
elements in the list into those that are less than or equal to that element and those that
are greater than it, sort both lists, and then append the results. This requires an auxiliary
function to do the partitioning step.

As before, we can provide an executable body, or first give a body that is partly executable.
For instance, we might supply code for sort but only specify partition:

functor Sort(X : PO) :> SORT where type OBJ.t=X.t =
struct

structure OBJ = X
val partition : OBJ.t * OBJ.t list -> (OBJ.t list * OBJ.t list) = ?
axiom Forall (a,l) =>

let val (l1,l2) = partition(a,l)
in Forall b => member(b,l1) implies OBJ.le(b,a)

andalso
Forall c => member(c,l2) implies not(OBJ.le(c,a))
andalso
Forall d => member(d,l) iff member(d,l1) orelse member(d,l2)
end

fun sort nil = nil
| sort(a::l) = let val (l1,l2) = partition(a,l)

in (sort l1)@(a::(sort l2))
end

end

We take the first element in the list as the one to partition by. The axiom for partition
assumes that member has been defined earlier. A complete executable version of the functor
is:

functor Sort(X : PO) :> SORT where type OBJ.t=X.t =
struct

structure OBJ = X
fun partition(a,nil) = (nil,nil)
| partition(a,b::l) =

let val (l1,l2) = partition(a,l)

3



in if OBJ.le(b,a) then (b::l1,l2) else (l1,b::l2)
end

fun sort nil = nil
| sort(a::l) = let val (l1,l2) = partition(a,l)

in (sort l1)@(a::(sort l2))
end

end

Proving that a functor meets its specification Proving that a functor meets its spec-
ification is like showing that a structure with substructures satisfies its specification: the
functor parameter may be regarded in the same way as substructures during the proof. In
this case the argument for using the specifications of substructures in the proof, rather than
the code, gains added force: we do not know ahead of time which structures a functor will be
applied to, and so we have no access to the code!

So, to prove correctness of Sort, we have to prove the axioms specifying sort in SORT,
namely:

Forall l => permutation(l,sort l)
Forall l => ordered(sort l)

from the code in the body of Sort, under the assumption that X satisfies PO and where
permutation, ordered and count are defined by the “hidden” axioms in SORT, namely:

Forall a => count(a,nil) = 0
Forall (a,l) => count(a,a::l) = 1+count(a,l)
Forall (a,b,l) => a=/=b implies count(a,b::l) = count(a,l)
Forall (l,l’) => permutation(l,l’) = (Forall x => count(x,l) = count(x,l’))
Forall l => ordered l iff

(Forall (a,b,c,x,y) => l==a@[x]@b@[y]@c implies OBJ.le(x,y))

4


