Recursive declarations

Generally SML has linear visibility, i.e. “an id must be declared
before it is used”. However, in certain cases recursion is allowed.

Function declarations are allowed to be
single recursive

mutual recursive when combined with and, e.g.:
fun
(* definition of f using g *)

and
(* definition of g using f *)

(©Anne E. Haxthausen, Fall 2006 — p.1/4

Recursive declarations

Type declarations are not allowed to be single or mutually recursive.

Datatype declarations are allowed to be

single recursive: dat atype dt = ... dt
mutual recursive when combined with and, e.g.:
dat at ype

dtl1 = ... dt2 ...

and

dt2 = ... dtl ...

A group of datatype declarations is allowed to be mutually recursive
with a group of (non recursive) type declarations, e.g.:
datatype di = ... t

Wthtype t = ... dt

(©Anne E. Haxthausen, Fall 2006 — p.2/4

Mutual recursion, example: file system

Mutually recursive type declarations:
dat atype el em =
File of string
| Catal ogue of string*contents
W thtype contents = elem i st;

Mutually recursive function definitions:
fun naneEl ens(Fil e s)
| naneEl ens(Cat al ogue(s, cnt))
s::(nanmeContents cnt)

[s]

and naneContents [] =[]
| nanmeContents (e::es) =
nameEl ens e @ (naneContents es);

(©Anne E. Haxthausen, Fall 2006 — p.3/4

Mutual recursion, example: file system

- val fs =
Cat al ogue("ah",

[File "readne",

Cat al ogue(" 02153",
[File "foils.tex",
File "foils.pdf"]),

Cat al ogue(" papers"”,
[File "fornsQ7.pdf"])]);

- nanmeEl ens fs;

>val it =
["ah", "readne", "02153", "foils.tex",
"foils.pdf", "papers", "forns07.pdf"]
string |ist

(©Anne E. Haxthausen, Fall 2006 — p.4/4

	Recursive declarations
	Recursive declarations
	Mutual recursion, example: file system
	Mutual recursion, example: file system

