
Recursive declarations

Generally SML has linear visibility, i.e. “an id must be declared
before it is used”. However, in certain cases recursion is allowed.

Function declarations are allowed to be

• single recursive

• mutual recursive when combined with and, e.g.:
fun
(* definition of f using g *)

...
and
(* definition of g using f *)

...

c©Anne E. Haxthausen, Fall 2006 – p.1/4

Recursive declarations

Type declarations are not allowed to be single or mutually recursive.

Datatype declarations are allowed to be

• single recursive: datatype dt = ... dt ...

• mutual recursive when combined with and, e.g.:
datatype
dt1 = ... dt2 ...
and
dt2 = ... dt1 ...

A group of datatype declarations is allowed to be mutually recursive
with a group of (non recursive) type declarations, e.g.:
datatype dt = ... t ...

withtype t = ... dt ...

c©Anne E. Haxthausen, Fall 2006 – p.2/4

Mutual recursion, example: file system

Mutually recursive type declarations:
datatype elem =

File of string
| Catalogue of string*contents

withtype contents = elem list;

Mutually recursive function definitions:
fun nameElems(File s) = [s]
| nameElems(Catalogue(s, cnt)) =

s::(nameContents cnt)

and nameContents [] = []
| nameContents (e::es) =

nameElems e @ (nameContents es);

c©Anne E. Haxthausen, Fall 2006 – p.3/4

Mutual recursion, example: file system

- val fs =
Catalogue("ah",

[File "readme",
Catalogue("02153",

[File "foils.tex",
File "foils.pdf"]),

Catalogue("papers",
[File "forms07.pdf"])]);

> ...

- nameElems fs;

> val it =
["ah", "readme", "02153", "foils.tex",
"foils.pdf", "papers", "forms07.pdf"]

: string list

c©Anne E. Haxthausen, Fall 2006 – p.4/4


	Recursive declarations
	Recursive declarations
	Mutual recursion, example: file system
	Mutual recursion, example: file system

