Closures (9.9)

HB/02100/ch9-11/1

Function Declarations, Global Names and Static Binding

val m=1;

fun F n= n+m

fun G s=20(F s)
>valm=1:int
>valF=fn:int->int
>valG=fn:int->int

F is bound to the function,
which adds 1 to its argument n.

F and G are bound to two specific
function values,

A value can not be changed,

but we may later redefine

F and/or G to denote some other
value.

>val F=fn:int->int

-val m=10; redefine m. Does that affect the
>valm=10:int function, which F denotes?
-F5; Nol!, F ill denotes the function,
>valit=6:int which adds 1 to its argument
-G5; and the G-function is also
>valit=12:int unaffected

- fun F j= 100; Now, redefine F to denote the

function which multiplies its
argument with 10

-G5;
>valit=12:int

But G is still bound to the
function, which returns 2[{a+1),
where a is the argument

The way SML handles global identifiers in function declarations and
fn-expressions is called static binding:

val (a,b,c)= ...
fun F(..)=..

funG(x,y)=(a x b F() cy)

val b=
fun F n=...

Inthe internal representation of the
function g bound to G

the actual values of the global a, b, ¢
and F mugt be catched, such that later
redefinitions of a, b, ¢ and F will not
affect the g-function

HB/02100/ch9-11/2

Closures (9.9)

A closure is the form, which SML uses for the internal representation of a

function f
A fn-expression
fn pat;=>exp; | ... | pat,=> exp,
is equivalent to the fn-expression below
fn x=> case x of pat;=>exp1 | ... | pat,=> expn
Internally the value of such afn-expression is represented by the closure:
(env, x, case x of pat;=> exp; | ... | pat,.=> expn)
* X isanew identifier

» env isavalue environment, which is the part of the actual
environment, binding the global identifiers occurring in expr; ,1<i< n

Recall that the execution of the function declaration

fun f apat; = exp;

| f apat, = exp:
m| f apat, = expn,

is the same as executing the following value declaration:

val rec f = fn x => case x of apat; => exp; | ... |apat, => exp,
which binds f to the value of the fn-expression.
Hence, the fun-declaration results in the following binding:

f - (env, x, case x of apat; => exp1| ... |apat, => expn)

HB/02100/ch9-11/3

Closures (9.9)

Example:
value environment
val m=1; [m > 1]

[m=>1,
F - ([m = 1], x, case x of n => n+m) |

funGs=20(Fs) [m>1,
F > (Im - 1], x, case x of n => n+m),

G = ([F2 (Im 2 1], x, case x of n => n+m)],
y, case y of s=> 2[(F s)) |

fun F n= n+m

[m=> 10,
F - ([m = 1], x, case x of n => n+m),

G = ([F~> (Im = 1], x, case x of n => n+m)],
y, case y of s=> 2[{F s))]

-val m=10;
>valm=10:int

-F5; [m>10, F>...,G>...,
>valit=6:int it>6]
-G5; [Mm>10, F>...,G~>...,
>valit=12:int it>12]
- fun F j= 100]; [m- 10,

>valF =fn:int ->int G- ([F > (Im > 1], x, case x of n => n+m)],
y, case y of s=> 2[{F s))
it=> 12,

F > ([], x, case x of j => 100)),

-G5;
>valit=12:int

HB/02100/ch9-11/4

Expression Evaluation with Environments

An expression expr is evaluated in a value-environment env to get its value v
Notation: (expr,env) ~— v
The evaluation takes place in afinite number of steps:
(expry, envy) ~— (expry, envy) ~— ... ~— ((expr,, envy) ~— Vv
The env part is omitted when no identifiers in the expression.

Evaluating Function Applications

Non-recursive functions:

Consider a function application for a non-recursive function f
fv, where f-> (env, X, &)

This function application results in the evaluation of e; in the environment
env; + [x2>v]

So we have
fv~o (e enve [x2V])

Example:

F5, where F 2 ([m = 1], x, case x of n => n+m)
~_ (case xof n=>n+m,[m > 1, x> 5])

~_ (case 50f n=>n+m,[m > 1])

~5 (n+m,[m->1,n> 5])

~- 5+1

~- 6

HB/02100/ch9-11/5

Evaluating Function Applications

Recursive functions

Consider afunction application for arecursive function f
fv, where f-> (envy X, €)

This function application results in the evaluation of e; in the environment
env; + [x2v, f 2 (envy, X, €]

So we have
fv~- (e envet [x2v, T2 (envy, X, €)])

Example
value environment
val c= 10 [c = 10]
funRO=c [c = 10,
| Rn=nOR(n-1) R ([c> 10], x, case x of 0=> ¢ | n=> n(R(n-1))
— — /
R1

~ - (case x of 0=>c¢ | n=>n[R(n-1), [c 2 10, x> 1,R > ()])
~- (n[(R(n-1), [n=2> 1, R>()])

~ - (1[R(1-1), [R > ()]

~- (R(0), [R=> ()]

~ - (case x of 0=> ¢ | n=>n[R(n-1), [c = 10, x> 0, R 2> ()]
~- (c,[c=>10])

~- 10

HB/02100/ch9-11/6
Type Inference
Consider the higher order function

fun foldrfb[] =b
| foldr fb (x::xs) =f(x, foldr f b xs)

foldr is ahigher order function
and the argument pattern shows that:

foldr: Ty - To - Tzlist - T4
fiTy, b:Tp (X:ixs): Tslist,
X: Tz, XS : T3list

The function body has type T4 S0

b: 14, f(x, foldr f b xs): T
hence T,=T4
AW f(x , foldr f b xs)
foldr f b xs: Ty M
/ Ta T

f: 130T, - T, hence 11 =13 0Ty - Ty
Consequently we have
foldr: (T3 0Ty > To) - Tr - Talist— 1o
or
foldr: (all'b - 'b) - 'b - 'alist->'b

HB/02100/ch9-11/7

Eager and Lazy Evaluation

SML evaluates function applications eagerly: In
f(e1, €2, ..., €n)

first evaluate all the argument expressionsto
(V1, V2, ..., V)

and then apply the function to the evaluated argument value
f(vi, Vo, ..., Vp)

Consider:

fun ifthenelse(x,y,z)=if x then y else z;
> val 'aifthenelse = fn : bool O'a O'a -> 'a

val r=if true then 2.0 else 3.1/0.0;
>valr=2.0:rea

ifthenelse(true, 2.0, 3.1/0.0);
I Uncaught exception: Divl

works differently

Getting Lazy Evaluation in SML

The function application (fn true=> e2 | false=>e3) el
works exactly like if el then e2 else e3

Using this idea we might declare an ifthenelse function like this:

fun ifthenelse(x,y,z)= if x then y() else z();
> val 'a ifthenelse = fn : bool Aunit ->'a) Aunit->'a) ->'a

ifthenelse(true, fn()=> 2.0, fn()=> 3.1/0.0); | now the function application
>valit=2.0:real behaves like
if true then 2.0 else 3.1/0.0

