
HB/02100/ch9-II/1

Closures (9.9)

Function Declarations, Global Names and Static Binding
val m= 1;

fun F n= n+m
fun G s= 2∗ (F s)
> val m = 1 : int
> val F = fn : int -> int
> val G = fn : int -> int

F is bound to the function,
which adds 1 to its argument n.

F and G are bound to two specific
function values,
A value can not be changed,
but we may later redefine
F and/or G to denote some other
value.

- val m= 10;
> val m = 10 : int

redefine m. Does that affect the
function, which F denotes?

- F 5;
> val it = 6 : int

No!, F still denotes the function,
which adds 1 to its argument

- G 5;
> val it = 12 : int

and the G-function is also
unaffected

- fun F j= 10∗j;
> val F = fn : int -> int

Now, redefine F to denote the
function which multiplies its
argument with 10

- G 5;
> val it = 12 : int

But G is still bound to the
function, which returns 2∗(a+1),
where a is the argument

The way SML handles global identifiers in function declarations and
fn-expressions is called static binding:

val (a,b,c)= …
fun F(..)= ..

fun G(x,y)= (a x b F() c y)

val b= ….
fun F n= …

In the internal representation of the
function g bound to G
the actual values of the global a, b, c
and F must be catched, such that later
redefinitions of a, b, c and F will not
affect the g-function

HB/02100/ch9-II/2

Closures (9.9)

A closure is the form, which SML uses for the internal representation of a
function f

A fn-expression

 fn pat1=> exp1 | … | patn=> expn

is equivalent to the fn-expression below

 fn x=> case x of pat1=> exp1 | … | patn=> expn

Internally the value of such a fn-expression is represented by the closure:

 (env, x, case x of pat1=> exp1 | … | patn=> expn)

• x is a new identifier

• env is a value environment, which is the part of the actual
environment, binding the global identifiers occurring in expri ,1≤i≤ n

Recall that the execution of the function declaration

fun f apat1 = exp1
 | f apat2 = exp2

 …

 | f apatn = expn

is the same as executing the following value declaration:

 val rec f = fn x => case x of apat1 => exp1 | … | apatn => expn

which binds f to the value of the fn-expression.

Hence, the fun-declaration results in the following binding:

 f → (env, x , case x of apat1 => exp1 | … | apatn => expn)

HB/02100/ch9-II/3

Closures (9.9)

Example:

value environment

val m= 1;

fun F n= n+m

fun G s= 2∗ (F s)

[m

�

 1]

[m

�

 1,
 F

�

 ([m

�

 1], x , case x of n => n+m)]

[m

�

 1,
 F

�

 ([m

�

 1], x , case x of n => n+m),

 G

�

 ([F

�

 ([m

�

 1], x , case x of n => n+m)],
 y, case y of s=> 2∗(F s))]

- val m= 10;
> val m = 10 : int

[m

�

 10,
 F

�

 ([m

�

 1], x , case x of n => n+m),

 G

�

 ([F

�

 ([m

�

 1], x , case x of n => n+m)],
 y, case y of s=> 2∗(F s))]

- F 5;
> val it = 6 : int

[m

�

 10, F

�

… , G

�

…,
 it

�

 6]

- G 5;
> val it = 12 : int

[m

�

 10, F

�

… , G

�

…,
 it

�

 12]

- fun F j= 10∗j;
> val F = fn : int -> int

[m

�

 10,

 G

�

 ([F

�

 ([m

�

 1], x , case x of n => n+m)],
 y, case y of s=> 2∗(F s))

 it

�

 12,

 F

�

 ([], x , case x of j => 10∗j),

]

- G 5;
> val it = 12 : int

HB/02100/ch9-II/4

Expression Evaluation with Environments

An expression expr is evaluated in a value-environment env to get its value v

Notation: (expr, env) ~→ v

The evaluation takes place in a finite number of steps:

 (expr1, env1) ~→ (expr2, env2) ~→ ... ~→ (exprn, envn) ~→ v

The env part is omitted when no identifiers in the expression.

Evaluating Function Applications
Non-recursive functions:

Consider a function application for a non-recursive function f

 f v, where f

�

 (envf, x, ef)

This function application results in the evaluation of ef in the environment

 envf + [x

�

v]

So we have

 f v ~→ (ef, envf+ [x

�

v])

Example:

F 5 , where F

�

 ([m

�

 1], x , case x of n => n+m)
~→ (case x of n => n+m, [m

�

 1, x

�

 5])
~→ (case 5 of n => n+m, [m

�

 1])
~→ (n+m, [m

�

 1, n

�

 5])
~→ 5+1
~→ 6

HB/02100/ch9-II/5

Evaluating Function Applications
Recursive functions
Consider a function application for a recursive function f

 f v, where f

�

 (envf, x, ef)

This function application results in the evaluation of ef in the environment

 envf + [x

�

v, f

�

 (envf, x, ef)]

So we have

 f v ~→ (ef, envf+ [x

�

v, f

�

 (envf, x, ef)])

Example

 value environment

val c= 10
fun R 0= c
 | R n= n∗ R(n-1)

[c

�

 10]
[c

�

 10,
R

�

 ([c

�

 10], x, case x of 0=> c | n=> n∗R(n-1))

R 1

~→ (case x of 0=> c | n=> n∗R(n-1), [c

�

 10, x

�

 1, R

�

 ()])

~→ (n∗R(n-1), [n

�

 1, R

�

 ()])

~→ (1∗R(1-1), [R

�

 ()])

~→ (R(0), [R

�

 ()])

~→ (case x of 0=> c | n=> n∗R(n-1), [c

�

 10, x

�

 0, R

�

 ()])

~→ (c , [c

�

 10])

~→ 10

HB/02100/ch9-II/6

Type Inference
Consider the higher order function

 fun foldr f b [] = b
 | foldr f b (x :: xs) = f(x, foldr f b xs)

foldr is a higher order function
 and the argument pattern shows that:

 foldr: τ1 → τ2 → τ3 list → τ4

 f: τ1, b: τ2, (x :: xs): τ3 list,

 x: τ3, xs : τ3 list

 The function body has type τ4 so

 b: τ4, f(x, foldr f b xs): τ4

 hence τ2 = τ4

 foldr f b xs: τ2

 f: τ3 ∗ τ2 → τ2 , hence τ1 = τ3 ∗ τ2 → τ2

Consequently we have

foldr: (τ3 ∗ τ2 → τ2) → τ2 → τ3 list→ τ2

or

foldr: ('a ∗ 'b → 'b) → 'b → 'a list -> 'b

f(x , foldr f b xs)

τ2 τ3

HB/02100/ch9-II/7

Eager and Lazy Evaluation

SML evaluates function applications eagerly: In

 f(e1, e2, … , en)

first evaluate all the argument expressions to

 (v1, v2, … , vn)

and then apply the function to the evaluated argument value

 f(v1, v2, … , vn)

Consider:

fun ifthenelse(x,y,z)= if x then y else z;
> val 'a ifthenelse = fn : bool ∗ 'a ∗ 'a -> 'a

val r= if true then 2.0 else 3.1/0.0;
> val r = 2.0 : rea

ifthenelse(true, 2.0, 3.1/0.0);
! Uncaught exception: Divl

Getting Lazy Evaluation in SML

The function application (fn true=> e2 | false=> e3) e1

works exactly like if e1 then e2 else e3

Using this idea we might declare an ifthenelse function like this:

fun ifthenelse(x,y,z)= if x then y() else z();
> val 'a ifthenelse = fn : bool ∗ (unit -> 'a) ∗ (unit -> 'a) -> 'a

ifthenelse(true, fn()=> 2.0, fn()=> 3.1/0.0);
> val it = 2.0 : real

works differently

now the function application
behaves like
if true then 2.0 else 3.1/0.0

