Informatik and Mathematical Modelling 4/12 07
DTU Michael R. Hansen

Below are solutions to the functional part of the exam in 02153, 2006.

Problem 5

1. Add(I "z",
Let(D [("x", N 3), ("y",Add(I "x", N 1))],
Add(I "X", I nyu)));

2. exception Env;
type env = (string * int) list;

fun lookup x [] = raise Env
| lookup x ((y,v)::env) = if x=y then v else lookup x env;

fun update x v [1 = [(x,v)]
| update x v ((y,v’)::env) = if x=y then (x,v)::env
else (y,v’) :: update x v env;

3. including the solution to 4.

datatype expr =
| ITE of bexpr * expr * expr (* question 4. *)
and bexpr =
True
| Le of expr * expr
| And of bexpr * bexpr
and decl = D of (string * expr) list

(* E: expr -> env -> int *)
fun E e env =

case e of
N n =>n
Ix => lookup x env

|

| Add(el,e2) =>FE el env + E e2 env

| Sub(el,e2) =>FE el env - E e2 env

| Let(d,e) => E e (extend d env)

| ITE(b,el,e2) => if B b env then E el env else E e2 env
(* question 4. *)



and B True _
| B(Le(el,e2)) env
| B(And(b1l,b2)) env

true (* question 4. x*)
E el env <= E e2 env
B bl env andalso B b2 env

(* extend decl -> env -> env %)
and extend(D []) env = env
| extend(D((x,e)::ds)) env = extend(D ds) (update x (E e env) env)

Problem 6
fun f x y = if x <= y then y :: f x (y-1) else [];
fun g h ([1, _) = false

| g h (_, [I) = false

| g h (x::xs, y::ys) = h(x,y)
orelse g h (x::xs, ys)
orelse g h (xs, y::ys);

1. f has the type £ : int -> int -> int list.
f10=[Jandf 1 3= 1[3,2,1].
f x y computes the list [y, y-1, y-2, ... , x] (and the empty list [] if y < x).

2. ghasthetypeg : (’a * b -> bool) -> ’a list * ’b list -> bool.
g h (xs, ys) is true iff h(x,y) is true for some x in xs and some y in ys.

3. g (fn (x,y) => x=y) : ’’a list * ’’a list -> bool.
g (fn (x,y) => x=y) (xs,ys) is true if xs and ys have a common element

Problem 7

We give three solutions. One using induction on natural numbers, one using structural
induction on lists, and one using well-founded induction (which turns out to be the sim-
plest).



Proof by induction on natural numbers.

We prove:
VkVzs.(take(k, zs) @ drop(k, zs) = xs)

Let P(k) be Vas.(take(k, zs) @ drop(k, zs) = xs).
Observe first that for any &' > 0 we have that

take(k', [])@ drop (K, []) =[] (*)

by the first clauses (t1) and (d1) of take and drop and the first clause of @.

The base case P(0). Consider arbitrary zs. We must prove:
take(0, zs)@Q drop(0, zs) = zs
The case where xs = [] is covered by (%), so assume that zs # []:
take(0, zs) @ drop(0, zs)
= [|Q s by (t2, d2)
= s by @1
For the inductive step we must prove:
Vk.(P(k) = P(k+1))
Consider an arbitrary k > 0 and assume the induction hypothesis P(k):
Vas'.(take(k, zs') @ drop(k, zs") = zs')
Consider an arbitrary zs. We must prove
take(k + 1, zs) @ drop(k + 1, xs) = xs

The case where zs = [] is covered by () so assume xs # []|. L.e. zs can be written in the
form zs = y :: ys and the inductive step is established by:

take(k + 1,y :: ys) @ drop(k + 1,y :: ys)

= (y :: take(k, ys))@ drop(k, ys) by (3, d3)
= vy (take(k, ys)@ drop(k, ys)) by (@2)
= y:ys using ind. hyp. with zs" = ys

and the proof is thereby completed.

Notice the use (and need for) the explicit quantifier Vs’ in the induction hypothesis when
it is used above. This part is handled elegantly in a proof using well-founded induction.



Proof by induction on structural induction on lists.

We prove:
VasVk.(take(k, zs) @ drop(k, zs) = xs)

In the following we assume that k& and k' range over natural numbers.
Let P(zs) be Vk.(take(k, zs) @ drop(k, zs) = xs).
The base case P([]). Consider arbitrary & > 0. We must prove:

take(k, [])@ drop(k, []) =[]

This follows easily by using the first clauses for take, drop and e@.

For the inductive step we must prove:
VasVe.(P(zs) = P(x :: xs)

Consider arbitrary list zs and element x of suitable types. Assume the induction hypothesis
P(zs):
VE' .(take(k', zs) @ drop(k', zs) = zs)

Consider an arbitrary k£ > 0. We must prove
take(k,z :: zs) @Q drop(k,x :: xs) = x = xs

Due to the form of the clauses for take and drop there are two cases to consider.

Case k = 0, which follows from:

take(0, x :: zs) @ drop(0, x :: xs)
= []@Q (z :: xs) by (t2, d2)
= x5 by @

Case k > 0:

take(k, z :: zs) @ drop(k, x :: xs)
= (x:: take(k — 1,2s))@Q drop(k — 1,zs) by (t3, d3)
x i (take(k — 1, 2s)@ drop(k — 1,2s5)) by (@2)
= 1z using ind. hyp. with £’ =k — 1

and the proof is thereby completed.

Notice the use (and need for) the explicit quantifier V&’ in the induction hypothesis when
it is used above. This part is handled elegantly in a proof using well-founded induction.



Proof by well-founded induction.

We prove:
V(k,zs) € N x 'alist.(take(k, zs) @ drop(k, zs) = xs)

by well-founded induction using the ordering (¥, xzs") < (k, xs) iff &' < k.

Consider an arbitrary (k, zs) € N x ‘alist and assume that
V(K zs") < (k,zs).(take(k', zs") @ drop(k', zs") = xs’) (%)

We must establish
take(k, zs) @ drop(k, zs) = zs
There are three cases to consider:
Case 1: s = []. This case is established by using the first clauses for take, drop and @.

Case 2: k = 0 and zs # []. This case is established by using the second clauses for take
and drop, respectively, and the first clause for @.

Case 3: k> 0 and s = y :: ys. This case follows from:
take(k,y :: ys) @ drop(k,y :: ys)
= (y:: take(k — 1, ys))@Q drop(k — 1, ys) by (t3, d3)

= vy (take(k — 1, ys)@ drop(k — 1,ys)) by (@2)
= y:ys using (*) and that (k — 1, ys) < (k, zs)

and the proof is thereby completed using the rule for well-founded induction.



