
Informatik and Mathematical Modelling 4/12 07
DTU Michael R. Hansen

Below are solutions to the functional part of the exam in 02153, 2006.

Problem 5

1. Add(I "z",

Let(D [("x", N 3), ("y",Add(I "x", N 1))],

Add(I "x", I "y")));

2. exception Env;

type env = (string * int) list;

fun lookup x [] = raise Env

| lookup x ((y,v)::env) = if x=y then v else lookup x env;

fun update x v [] = [(x,v)]

| update x v ((y,v’)::env) = if x=y then (x,v)::env

else (y,v’) :: update x v env;

3. including the solution to 4.

datatype expr =

.....

| ITE of bexpr * expr * expr (* question 4. *)

and bexpr =

True

| Le of expr * expr

| And of bexpr * bexpr

and decl = D of (string * expr) list

(* E: expr -> env -> int *)

fun E e env =

case e of

N n => n

| I x => lookup x env

| Add(e1,e2) => E e1 env + E e2 env

| Sub(e1,e2) => E e1 env - E e2 env

| Let(d,e) => E e (extend d env)

| ITE(b,e1,e2) => if B b env then E e1 env else E e2 env

(* question 4. *)

1

and B True _ = true (* question 4. *)

| B(Le(e1,e2)) env = E e1 env <= E e2 env

| B(And(b1,b2)) env = B b1 env andalso B b2 env

(* extend decl -> env -> env *)

and extend(D []) env = env

| extend(D((x,e)::ds)) env = extend(D ds) (update x (E e env) env)

Problem 6

fun f x y = if x <= y then y :: f x (y-1) else [];

fun g h ([], _) = false

| g h (_, []) = false

| g h (x::xs, y::ys) = h(x,y)

orelse g h (x::xs, ys)

orelse g h (xs, y::ys);

1. f has the type f : int -> int -> int list.
f 1 0 = [] and f 1 3 = [3,2,1].
f x y computes the list [y, y-1, y-2, ... , x] (and the empty list [] if y < x).

2. g has the type g : (’a * ’b -> bool) -> ’a list * ’b list -> bool.
g h (xs, ys) is true iff h(x,y) is true for some x in xs and some y in ys.

3. g (fn (x,y) => x=y) : ’’a list * ’’a list -> bool.
g (fn (x,y) => x=y) (xs,ys) is true if xs and ys have a common element

Problem 7

We give three solutions. One using induction on natural numbers, one using structural
induction on lists, and one using well-founded induction (which turns out to be the sim-
plest).

2

Proof by induction on natural numbers.

We prove:
∀k∀xs .(take(k, xs) @ drop(k, xs) = xs)

Let P (k) be ∀xs .(take(k, xs) @ drop(k, xs) = xs).

Observe first that for any k′ ≥ 0 we have that

take(k′, [])@ drop(k′, []) = [] (∗)

by the first clauses (t1) and (d1) of take and drop and the first clause of @.

The base case P (0). Consider arbitrary xs . We must prove:

take(0, xs)@ drop(0, xs) = xs

The case where xs = [] is covered by (∗), so assume that xs 6= []:

take(0, xs) @ drop(0, xs)
= []@ xs by (t2, d2)
= xs by @1

For the inductive step we must prove:

∀k.(P (k) =⇒ P (k + 1))

Consider an arbitrary k ≥ 0 and assume the induction hypothesis P (k):

∀xs ′.(take(k, xs ′) @ drop(k, xs ′) = xs ′)

Consider an arbitrary xs . We must prove

take(k + 1, xs) @ drop(k + 1, xs) = xs

The case where xs = [] is covered by (∗) so assume xs 6= []. I.e. xs can be written in the
form xs = y :: ys and the inductive step is established by:

take(k + 1, y :: ys) @ drop(k + 1, y :: ys)
= (y :: take(k, ys))@ drop(k, ys) by (t3, d3)
= y :: (take(k, ys)@ drop(k, ys)) by (@2)
= y :: ys using ind. hyp. with xs ′ = ys

and the proof is thereby completed.

Notice the use (and need for) the explicit quantifier ∀xs ′ in the induction hypothesis when
it is used above. This part is handled elegantly in a proof using well-founded induction.

3

Proof by induction on structural induction on lists.

We prove:
∀xs∀k.(take(k, xs) @ drop(k, xs) = xs)

In the following we assume that k and k′ range over natural numbers.

Let P (xs) be ∀k .(take(k, xs) @ drop(k, xs) = xs).

The base case P ([]). Consider arbitrary k ≥ 0. We must prove:

take(k, [])@ drop(k, []) = []

This follows easily by using the first clauses for take, drop and @.

For the inductive step we must prove:

∀xs∀x.(P (xs) =⇒ P (x :: xs)

Consider arbitrary list xs and element x of suitable types. Assume the induction hypothesis
P (xs):

∀k′.(take(k′, xs) @ drop(k′, xs) = xs)

Consider an arbitrary k ≥ 0. We must prove

take(k, x :: xs) @ drop(k, x :: xs) = x :: xs

Due to the form of the clauses for take and drop there are two cases to consider.

Case k = 0, which follows from:

take(0, x :: xs) @ drop(0, x :: xs)
= []@ (x :: xs) by (t2, d2)
= x :: xs by @

Case k > 0:

take(k, x :: xs) @ drop(k, x :: xs)
= (x :: take(k − 1, xs))@ drop(k − 1, xs) by (t3, d3)
= x :: (take(k − 1, xs)@ drop(k − 1, xs)) by (@2)
= x :: xs using ind. hyp. with k′ = k − 1

and the proof is thereby completed.

Notice the use (and need for) the explicit quantifier ∀k′ in the induction hypothesis when
it is used above. This part is handled elegantly in a proof using well-founded induction.

4

Proof by well-founded induction.

We prove:
∀(k, xs) ∈ N × ′a list.(take(k, xs) @ drop(k, xs) = xs)

by well-founded induction using the ordering (k′, xs ′) ≺ (k, xs) iff k′ < k.

Consider an arbitrary (k, xs) ∈ N × ′a list and assume that

∀(k′, xs ′) ≺ (k, xs).(take(k′, xs ′) @ drop(k′, xs ′) = xs ′) (∗)

We must establish
take(k, xs) @ drop(k, xs) = xs

There are three cases to consider:

Case 1: xs = []. This case is established by using the first clauses for take, drop and @.

Case 2: k = 0 and xs 6= []. This case is established by using the second clauses for take
and drop, respectively, and the first clause for @.

Case 3: k > 0 and xs = y :: ys . This case follows from:

take(k, y :: ys) @ drop(k, y :: ys)
= (y :: take(k − 1, ys))@ drop(k − 1, ys) by (t3, d3)
= y :: (take(k − 1, ys)@ drop(k − 1, ys)) by (@2)
= y :: ys using (∗) and that (k − 1, ys) ≺ (k, xs)

and the proof is thereby completed using the rule for well-founded induction.

5

