Below are solutions to the functional part of the exam in 02153, 2006.

Problem 5

1. Add(I "z",

Let(D [("x", N 3), ("y",Add(I "x", N 1))], Add(I "x", I "y")));
2. exception Env;

```
type env = (string * int) list;
fun lookup x [] = raise Env
    | lookup x ((y,v)::env) = if x=y then v else lookup x env;
fun update x v [] = [(x,v)]
    | update x v ((y,v')::env) = if x=y then (x,v)::env
        else (y,v') :: update x v env;
```

3 . including the solution to 4 .

```
datatype expr =
    | ITE of bexpr * expr * expr (* question 4. *)
and bexpr =
        True
    | Le of expr * expr
    | And of bexpr * bexpr
and decl = D of (string * expr) list
(* E: expr -> env -> int *)
fun E e env =
    case e of
        N n => n
        | I x => lookup x env
        | Add(e1,e2) => E e1 env + E e2 env
        | Sub(e1,e2) => E e1 env - E e2 env
        | Let(d,e) => E e (extend d env)
            | ITE(b,e1,e2) => if B b env then E e1 env else E e2 env
            (* question 4. *)
```

```
and B True _ true (* question 4. *)
    | \(B(\operatorname{Le}(e 1, e 2))\) env = \(E\) e1 env <= E e2 env
    | \(B(A n d(b 1, b 2))\) env \(=B\) b1 env andalso \(B\) b2 env
(* extend decl -> env -> env *)
and extend( \(D[]\) ) env = env
    | extend( \(((x, e):: d s))\) env \(=\) extend ( \(D\) ds) (update \(x\) (E env) env)
```


Problem 6

fun $f x y=$ if $x<=y$ then $y:: f(y-1)$ else [];
fun $\mathrm{gh}\left([],{ }_{\mathrm{h}}\right.$) = false
l gh (_, []) = false
| g h (x::xs, y::ys) = h(x,y)
orelse g h (x::xs, ys)
orelse g h (xs, y::ys);

1. f has the type f : int $->$ int $->$ int list.
f $10=[]$ and $f 13=[3,2,1]$.
f x y computes the list $[\mathrm{y}, \mathrm{y}-1, \mathrm{y}-2, \ldots, \mathrm{x}$] (and the empty list [] if $y<x$).
2. g has the type $\mathrm{g}:\left(' \mathrm{a} *{ }^{\prime} \mathrm{b}->\mathrm{bool}\right)$-> 'a list * 'b list $->$ bool.
$\mathrm{g} h$ (xs, ys) is true iff $\mathrm{h}(\mathrm{x}, \mathrm{y})$ is true for some x in xs and some y in ys.
3. $\mathrm{g}(\mathrm{fn}(\mathrm{x}, \mathrm{y})=>\mathrm{x}=\mathrm{y})$: ' 'a list * ''a list -> bool.
$g(f n(x, y)=>x=y)(x s, y s)$ is true if $x s$ and $y s$ have a common element

Problem 7

We give three solutions. One using induction on natural numbers, one using structural induction on lists, and one using well-founded induction (which turns out to be the simplest).

Proof by induction on natural numbers.

We prove:

$$
\forall k \forall x s .(\operatorname{take}(k, x s) @ \operatorname{drop}(k, x s)=x s)
$$

Let $P(k)$ be $\forall x s .(\operatorname{take}(k, x s) @ \operatorname{drop}(k, x s)=x s)$.
Observe first that for any $k^{\prime} \geq 0$ we have that

$$
\begin{equation*}
\operatorname{take}\left(k^{\prime},[]\right) @ \operatorname{drop}\left(k^{\prime},[]\right)=[] \tag{*}
\end{equation*}
$$

by the first clauses (t 1) and (d 1) of take and drop and the first clause of ©.
The base case $P(0)$. Consider arbitrary $x s$. We must prove:

$$
\operatorname{take}(0, x s) @ \operatorname{drop}(0, x s)=x s
$$

The case where $x s=[]$ is covered by $(*)$, so assume that $x s \neq[]$:

$$
\begin{aligned}
& \operatorname{take}(0, x s) @ \operatorname{drop}(0, x s) \\
= & {[] @ x s } \\
= & x s
\end{aligned} \quad \text { by }(\mathrm{t} 2, \mathrm{~d} 2)
$$

For the inductive step we must prove:

$$
\forall k .(P(k) \Longrightarrow P(k+1))
$$

Consider an arbitrary $k \geq 0$ and assume the induction hypothesis $P(k)$:

$$
\forall x s^{\prime} .\left(\operatorname{take}\left(k, x s^{\prime}\right) @ \operatorname{drop}\left(k, x s^{\prime}\right)=x s^{\prime}\right)
$$

Consider an arbitrary $x s$. We must prove

$$
\operatorname{take}(k+1, x s) @ \operatorname{drop}(k+1, x s)=x s
$$

The case where $x s=[]$ is covered by $(*)$ so assume $x s \neq[]$. I.e. $x s$ can be written in the form $x s=y:: y s$ and the inductive step is established by:

$$
\begin{array}{rll}
& \operatorname{take}(k+1, y:: y s) @ \operatorname{drop}(k+1, y:: y s) & \\
= & (y:: \operatorname{take}(k, y s)) @ \operatorname{drop}(k, y s) & \text { by }(\mathrm{t} 3, \mathrm{~d} 3) \\
= & y::(\operatorname{take}(k, y s) @ \operatorname{drop}(k, y s)) & \text { by }(@ 2) \\
= & y:: y s & \text { using ind. hyp. with } x s^{\prime}=y s
\end{array}
$$

and the proof is thereby completed.
Notice the use (and need for) the explicit quantifier $\forall x s^{\prime}$ in the induction hypothesis when it is used above. This part is handled elegantly in a proof using well-founded induction.

Proof by induction on structural induction on lists.

We prove:

$$
\forall x s \forall k .(\operatorname{take}(k, x s) @ \operatorname{drop}(k, x s)=x s)
$$

In the following we assume that k and k^{\prime} range over natural numbers.
Let $P(x s)$ be $\forall k$. $(\operatorname{take}(k, x s) @ \operatorname{drop}(k, x s)=x s)$.
The base case $P([])$. Consider arbitrary $k \geq 0$. We must prove:

$$
\operatorname{take}(k,[]) @ \operatorname{drop}(k,[])=[]
$$

This follows easily by using the first clauses for take, drop and @.
For the inductive step we must prove:

$$
\forall x s \forall x .(P(x s) \Longrightarrow P(x:: x s)
$$

Consider arbitrary list $x s$ and element x of suitable types. Assume the induction hypothesis $P(x s)$:

$$
\forall k^{\prime} .\left(\operatorname{take}\left(k^{\prime}, x s\right) @ \operatorname{drop}\left(k^{\prime}, x s\right)=x s\right)
$$

Consider an arbitrary $k \geq 0$. We must prove

$$
\operatorname{take}(k, x:: x s) @ \operatorname{drop}(k, x:: x s)=x:: x s
$$

Due to the form of the clauses for take and drop there are two cases to consider.
Case $k=0$, which follows from:

$$
\begin{array}{rlr}
& \operatorname{take}(0, x:: x s) @ \operatorname{drop}(0, x:: x s) & \\
= & {[] @(x:: x s)} & \text { by (t2, d} 2) \\
=x:: x s & \text { by @ }
\end{array}
$$

Case $k>0$:

$$
\begin{array}{rll}
& \operatorname{take}(k, x:: x s) @ \operatorname{drop}(k, x:: x s) & \\
= & (x:: \operatorname{take}(k-1, x s)) @ \operatorname{drop}(k-1, x s) & \\
\text { by }(\mathrm{t} 3, \mathrm{~d} 3) \\
= & x::(\operatorname{take}(k-1, x s) @ \operatorname{drop}(k-1, x s)) & \text { by }(@ 2) \\
= & x:: x s &
\end{array}
$$

and the proof is thereby completed.
Notice the use (and need for) the explicit quantifier $\forall k^{\prime}$ in the induction hypothesis when it is used above. This part is handled elegantly in a proof using well-founded induction.

Proof by well-founded induction.

We prove:

$$
\forall(k, x s) \in \mathbb{N} \times \text { 'a list.(take }(k, x s) @ \operatorname{drop}(k, x s)=x s)
$$

by well-founded induction using the ordering $\left(k^{\prime}, x s^{\prime}\right) \prec(k, x s)$ iff $k^{\prime}<k$.
Consider an arbitrary $(k, x s) \in \mathbb{N} \times$ 'a list and assume that

$$
\begin{equation*}
\forall\left(k^{\prime}, x s^{\prime}\right) \prec(k, x s) .\left(\operatorname{take}\left(k^{\prime}, x s^{\prime}\right) @ \operatorname{drop}\left(k^{\prime}, x s^{\prime}\right)=x s^{\prime}\right) \tag{*}
\end{equation*}
$$

We must establish

$$
\operatorname{take}(k, x s) @ \operatorname{drop}(k, x s)=x s
$$

There are three cases to consider:
Case 1: $x s=[]$. This case is established by using the first clauses for take, drop and @.
Case 2: $k=0$ and $x s \neq[]$. This case is established by using the second clauses for take and drop, respectively, and the first clause for ©.
Case 3: $k>0$ and $x s=y:: y s$. This case follows from:

$$
\begin{array}{rll}
& \operatorname{take}(k, y:: y s) @ \operatorname{drop}(k, y:: y s) & \\
= & (y:: \operatorname{take}(k-1, y s)) @ \operatorname{drop}(k-1, y s) & \text { by }(\mathrm{t} 3, \mathrm{~d} 3) \\
= & y::(\operatorname{take}(k-1, y s) @ \operatorname{drop}(k-1, y s)) & \text { by }(@ 2) \\
= & y:: y s & \\
\text { using }(*) \text { and that }(k-1, y s) \prec(k, x s)
\end{array}
$$

and the proof is thereby completed using the rule for well-founded induction.

