Informatik and Mathematical Modelling 26/11 07
DTU Michael R. Hansen

Problem A

Consider the following declarations:

fun map f [] = []
| map f (x::xs) (f x) :: map f xs

infix @ fun [] @ ys = ys
| (x::xs) @ ys =x :: (xs @ ys)

Prove
map f (l; @ly) = (map fl;)Q (map fy) (1)

The proof is by structural induction over the list {;

The base case is established by:

map [([]@1l)
= map fly def. @
| @map f Iy def. @

= (map [[]) @ (map fl5) def. map
Inductive step: We must establish:
VesVr.(P(xs) = P(x :: xs))
where the induction hypothesis P(xs) is

map f (zs@Qly) = (map fxs)@ (map f)

Consider arbitrary list s and element x (of right types). Assume that the induction
hypothesis holds. Then, the inductive step is completed by:

map f ((z :: zs) Qly)
= map f(z:: (zsQly)) def. @
f(z) = map f (xzsQly) def. map
7(x) = (map f £5) @ (map £ 1)) nd. hyp
(f(x) :: (map fxs)) @Q(map fly) def. @
= map f (z :: s) Q (map f l5) def. map

By the structural induction principle for lists, we conclude that (1) holds for all lists Iy
and [,.

Problem B

Consider the declarations:

datatype ’a tree = Lf | Br of ’a * ’a tree * ’a tree

fun inorder Lf = []
| inorder(Br(x, t1, t2)) = inorder t1 @ (x :: inorder t2)
fun io(LF, xs) = xs8

| io(Br(x, t1, t2), xs)
Prove that

io(tl, x :: io(t2, xs))

inorder(t) @l = io(t,l) (2)
for all t € 'atree and [€ 'alist. You may assume that @ is associative.
We prove by structural induction on trees that for all ¢ € 'atree:
VI.(inorder(t) @l = io(t,1)) (%)

The base case is established as follows: Consider an arbitrary list /. Then we have
inorder(Lf) @]

= [J@l def. inorder
= I def. @
= 1io(Lf,!) def. io

For the inductive step, we must establish:
th,tg, n(P(tl) A P(tg) = P(Br(n,tl,tg)))

where P(t) is
VI'.(inorder(t) @!" = io(t,!))

Consider arbitrary trees tq,ts, and element n (of suitable types). Assume the induction
hypotheses P(t;) and P(t2) . Consider arbitrary list [. The inductive step is completed
by:
inorder(Br(n,ty,t3)) Q1
= (inorder(t;) @ (n :: inorder(ty))) @[def. inorder
= inorder(t;) @ ((n :: inorder(ty)) @[) append is associative

= 1io(ty, (n :: inorder(ty)) @QI) ind. hyp. I’ — ((n :: inorder(ty)) Q1)
= io(ty,n :: (inorder(ty) Q1)) def. @

= 1io(ty,n : io(t, 1)) ind. hyp. ' — [

= 1io(Br(n,ti,ts),1)) def. io

By the structural induction principle for trees, we conclude that (*) holds for all trees t.

Notice that the explicit quantification (V) is needed in (*) to make the induction hy-
potheses strong enough. Without this quantification the above inductive step could not
be completed. (Make sure that you understand why.)

