
Informatik and Mathematical Modelling 26/11 07
DTU Michael R. Hansen

Problem A

Consider the following declarations:

fun map f [] = []

| map f (x::xs) = (f x) :: map f xs

infix @ fun [] @ ys = ys

| (x::xs) @ ys = x :: (xs @ ys)

Prove
map f (l1 @ l2) = (map f l1) @ (map f l2) (1)

The proof is by structural induction over the list l1

The base case is established by:

map f ([] @ l2)
= map f l2 def. @
= [] @ map f l2 def. @
= (map f []) @ (map f l2) def. map

Inductive step: We must establish:

∀xs.∀x.(P (xs) ⇒ P (x :: xs))

where the induction hypothesis P (xs) is

map f (xs @ l2) = (map f xs) @ (map f l2)

Consider arbitrary list xs and element x (of right types). Assume that the induction
hypothesis holds. Then, the inductive step is completed by:

map f ((x :: xs) @ l2)
= map f (x :: (xs @ l2)) def. @
= f(x) :: map f (xs @ l2) def. map

= f(x) :: ((map f xs) @ (map f l2)) ind. hyp

= (f(x) :: (map f xs)) @ (map f l2) def. @
= map f (x :: xs) @ (map f l2) def. map

By the structural induction principle for lists, we conclude that (1) holds for all lists l1
and l2.

1



Problem B

Consider the declarations:

datatype ’a tree = Lf | Br of ’a * ’a tree * ’a tree

fun inorder Lf = []

| inorder(Br(x, t1, t2)) = inorder t1 @ (x :: inorder t2)

fun io(LF, xs) = xs

| io(Br(x, t1, t2), xs) = io(t1, x :: io(t2, xs))

Prove that
inorder(t) @ l = io(t, l) (2)

for all t ∈ ′a tree and l ∈ ′a list. You may assume that @ is associative.

We prove by structural induction on trees that for all t ∈ ′a tree:

∀l.(inorder(t) @ l = io(t, l)) (∗)

The base case is established as follows: Consider an arbitrary list l. Then we have

inorder(Lf) @ l

= [] @ l def. inorder

= l def. @
= io(Lf, l) def. io

For the inductive step, we must establish:

∀t1, t2, n.(P (t1) ∧ P (t2) ⇒ P (Br(n, t1, t2)))

where P (t) is
∀l′.(inorder(t) @ l′ = io(t, l′))

Consider arbitrary trees t1, t2, and element n (of suitable types). Assume the induction
hypotheses P (t1) and P (t2) . Consider arbitrary list l. The inductive step is completed
by:

inorder(Br(n, t1, t2)) @ l

= (inorder(t1) @ (n :: inorder(t2))) @ l def. inorder
= inorder(t1) @ ((n :: inorder(t2)) @ l) append is associative
= io(t1, (n :: inorder(t2)) @ l) ind. hyp. l′ 7→ ((n :: inorder(t2)) @ l)
= io(t1, n :: (inorder(t2) @ l)) def. @
= io(t1, n :: io(t2, l)) ind. hyp. l′ 7→ l

= io(Br(n, t1, t2), l)) def. io

By the structural induction principle for trees, we conclude that (*) holds for all trees t.

Notice that the explicit quantification (∀l) is needed in (∗) to make the induction hy-
potheses strong enough. Without this quantification the above inductive step could not
be completed. (Make sure that you understand why.)

2


