
Informatik and Mathematical Modelling 12/9 07
DTU Michael R. Hansen

02153 Declarative Programming

Programming Exercise 3

This exercise collection has parts:

1. A first part where the purpose is to make you more acquainted with recursion, basic
types, lists and the use of libraries. This is a collection of small exercises.

2. The second part concerns efficient algorithms. In particular you shall develop two
versions of merge sort, which both have a nlogn worst case execution time.

Strive for succinctness and elegance when you solve the problems — it is important
that your programs and program designs can be communicated to other people.

Part I

1. Use of Libraries. This exercise guides you through the use of libraries, such as Math
and String. See also Appendix D in the textbook (HR), on the online documentation
of the libraries from the homepage of MoscowML.

To use names declared in a program library, e.g. Math.pi, you should load the library
first. This is done as follows:

- load "Math";

> val it = () : unit

- Math.pi;

> val it = 3.14159265359 : real

By opening the library Math, you can use pi and all other names declared directly:

- open Math;

> type real = real

val cos = fn : real -> real

.....

val pi = 3.14159265359 : real

.....

val e = 2.71828182846 : real

val sqrt = fn : real -> real

- pi;

> val it = 3.14159265359 : real

1

2. Declare an SML function pow: string * int -> string, where:

pow(s, n) = s ˆ s ˆ · · · ˆ s
︸ ︷︷ ︸

n

3. Prime numbers

(a) Declare the SML function

notDivisible: int * int -> bool

where notDivisible(d, n) is true if and only if d is not a divisor of n. For ex-
ample notDivisible(2, 5) = true, and notDivisible(3, 9) = false.

(b) Declare the SML function test: int * int * int ->bool. The value of
test(a, b, c), for a ≤ b, is the truth value of:

notDivisible(a, c)
and notDivisible(a + 1, c)

...
and notDivisible(b, c)

(c) Declare an SML function prime: int -> bool, where prime(n) = true, if and
only if n is a prime number.

(d) Declare an SML function nextPrime: int -> int, where nextPrime(n) is the
smallest prime number > n.

(e) Declare an SML function pr: int -> int list such that pr n is the list of
the first n prime numbers.

(f) Declare an SML function pr’: int * int -> int list so that pr’(m,n) is
the list of the prime numbers between m and n.

4. On slow sorting

(a) Declare an SML function finding the smallest element in a non-empty integer
list.

(b) Declare an SML function delete: int * int list -> int list, where the
value of delete(a, xs) is the list obtained by deleting one occurrence of a in xs

(when this is possible).

(c) Declare an SML function which sorts an integer list so that the elements are
placed in weakly ascending order.

2

Part 2: Merge Sort

Merge sort is an efficient algorithm for sorting a list of elements, which has a worst-case
execution time of order n log n.

A merge of two sorted lists, e.g. merge([1,4,9, 12], [2, 3 4, 5 10,13]) is a new sorted list,
[1,2,3,4,4,5,9,10,12,13], made up from the elements of the arguments. This operation can
be declared so that it has a worst-case running time proportional to the sum of the length
of the argument lists. Declare such a function.

Top-down merge sort

The idea behind top-down merge sort is a recursive algorithm: take an arbitrary list with
more than one element: [a1, . . . , aj, aj+1, . . . , an], split it around the middle position, say
j, into two lists: [a1, . . . , aj] and [aj+1, . . . , an]. Sort these two lists and merge the results.
The empty list and lists with one element are the base cases.

Declare a function for top-down merge sort in SML, which has a worst-case execution
time of order n log n. (Argue about the worst-case running time.) You may use the
functions take and drop from the list library for the splitting of a list.

Bottom-up merge sort

The idea behind bottom-up merge sort is explained as follows:

1. Construct a list of one-element lists [[a1], . . . , [aj], [aj+1], . . . , [an]], from the original
list [a1, . . . , an].

2. Traverse the list repeatedly, where each traversal merge neighbouring pairs of lists.
For example, after one traversal the list has the form:

[merge([a1], [a2]),merge([a3], [a4]), . . .]

This process will end with a list containing one sorted list.

Declare a function for bottom-up merge sort in SML, which has a worst-case execution
time of order n log n. (Argue about the worst-case running time.)

Which of the two merge sort programs would you prefer. (Provide argument.)

3

