02153 Declarative Programming Programming Exercise 2

The purpose of this exercise is to make you acquainted with some high-level features of SML and to illustrate a solution to a problem, which is based on "declarative" properties of the entities under consideration.

We represent the polynomial $a_{0}+a_{1} \cdot x+\ldots+a_{n} \cdot x^{n}$ with integer coefficients $a_{0}, a_{1}, \ldots, a_{n}$ by the list $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$. For instance, the polynomial $x^{3}+2$ is represented by the list $[2,0,0,1]$.

1. Declare an infix SML function for addition of polynomials in the chosen representation.
2. Declare an SML function for multiplying a polynomial by a constant.
3. Declare an SML function for multiplying a polynomial $Q(x)$ by x.
4. Declare an infix SML function for multiplication of polynomials in the chosen representation. The following properties are useful when defining the multiplication:

$$
\begin{aligned}
& 0 \cdot Q(x)=0 \\
& \begin{aligned}
\left(a_{0}+a_{1} \cdot\right. & \left.x+\ldots+a_{n} \cdot x^{n}\right) \cdot Q(x) \\
\quad & =a_{0} \cdot Q(x)+x \cdot\left(\left(a_{1}+a_{2} \cdot x+\ldots+a_{n} \cdot x^{n-1}\right) \cdot Q(x)\right)
\end{aligned}
\end{aligned}
$$

5. Declare an SML function to give a textual representation for a polynomial.
