02153 Declarative Programming Programming Exercise 1

1. Declare a function g : int $->$ int, where $\mathrm{g}(n)=n+4$.
2. Declare a recursive function f : int -> int, where

$$
f(n)=1+2+\cdots+(n-1)+n
$$

for $n \geq 0$. (Hint: use two clauses with 0 and n as argument patterns.)
State the recursion formula corresponding to the declaration.
3. Declare a recursive function sum: int*int -> int, where

$$
\operatorname{sum}(m, n)=m+(m+1)+(m+2)+\cdots+(m+(n-1))+(m+n)
$$

for $m \geq 0$ and $n \geq 0$. (Hint: use two clauses with ($\mathrm{m}, 0$) and (m, n) as argument patterns.)

Give the recursion formula corresponding to the declaration.
4. The sequence $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \ldots$ of Fibonacci numbers is defined by:

$$
\begin{aligned}
& \mathrm{F}_{0}=0 \\
& \mathrm{~F}_{1}=1 \\
& \mathrm{~F}_{n}=\mathrm{F}_{n-1}+\mathrm{F}_{n-2}
\end{aligned}
$$

Thus, the first members of the sequence are $0,1,1,2,3,5,8,13, \ldots$.
Declare an SML function to compute F_{n}. Use a declaration with three clauses, where the argument patterns correspond to the three cases of the above definition.
5. The following figure gives the first part of Pascal's triangle:

\[

\]

The entries of the triangle are called binomial coefficients. The k 'th binomial coefficient of the n 'th row is denoted $\binom{n}{k}$, for $n \geq 0$ and $0 \leq k \leq n$, e.g. $\binom{2}{1}=2$ and $\binom{4}{2}=6$. The first and last binomial coefficients, i.e. $\binom{n}{0}$ and $\binom{n}{n}$, of row n are both 1. A binomial coefficient inside a row is the sum of the two binomial coefficients immediately above it. These properties can be expressed as follows:

$$
\binom{n}{0}=\binom{n}{n}=1
$$

and

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \text { if } n \neq 0, k \neq 0, \text { and } n>k .
$$

Declare an SML function bin: int*int -> int to compute binomial coefficients.
Hint: You cannot use an argument pattern (n, n) for the case $\binom{n}{n}=1$, as SML does not allow multiple occurrences of an identifier in a pattern. Use an if - then - else - expression instead.

