
Introduction to SML
Lists

Michael R. Hansen
mrh@imm.dtu.dk

Informatics and Mathematical Modelling

Technical University of Denmark

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 1/9

Overview

• values and constructors

• recursions following the structure of lists

The purpose of this lecture is to give you an (as short as possible)
introduction to lists, so that you can solve a problem which can
illustrate some of SML’s high-level features.

This part is not intended as a comprehensive presentation on lists,
and we will return to the topic again later.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 2/9

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/9

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/9

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

- ["a", "ab", "abc", ""];
> val it = ["a", "ab", "abc", ""] : string list

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/9

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

- ["a", "ab", "abc", ""];
> val it = ["a", "ab", "abc", ""] : string list

- [Math.sin, Math.cos];
> val it = [fn, fn] : (real -> real) list

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/9

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

- ["a", "ab", "abc", ""];
> val it = ["a", "ab", "abc", ""] : string list

- [Math.sin, Math.cos];
> val it = [fn, fn] : (real -> real) list

- [(1,true), (3,true)];
> val it = [(1, true),(3, true)]: (int*bool) list

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/9

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

- ["a", "ab", "abc", ""];
> val it = ["a", "ab", "abc", ""] : string list

- [Math.sin, Math.cos];
> val it = [fn, fn] : (real -> real) list

- [(1,true), (3,true)];
> val it = [(1, true),(3, true)]: (int*bool) list

- [[],[1],[1,2]];
> val it = [[], [1], [1, 2]] : int list list

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/9

The type constructor: list

If τ is a type, so is τ list

Examples:

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/9

The type constructor: list

If τ is a type, so is τ list

Examples:

• int list

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/9

The type constructor: list

If τ is a type, so is τ list

Examples:

• int list

• (string * int) list

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/9

The type constructor: list

If τ is a type, so is τ list

Examples:

• int list

• (string * int) list

• ((int -> string) list) list

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/9

The type constructor: list

If τ is a type, so is τ list

Examples:

• int list

• (string * int) list

• ((int -> string) list) list

list has higher precedence than * and ->

int * real list -> bool list

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/9

The type constructor: list

If τ is a type, so is τ list

Examples:

• int list

• (string * int) list

• ((int -> string) list) list

list has higher precedence than * and ->

int * real list -> bool list

means

(int * (real list)) -> (bool list)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/9

Trees for lists

A non-empty list [x1, x2, . . . , xn], n ≥ 1, consists of

• a head x1 and

• a tail [x2, . . . , xn]

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 5/9

Trees for lists

A non-empty list [x1, x2, . . . , xn], n ≥ 1, consists of

• a head x1 and

• a tail [x2, . . . , xn]

::
�

�
�

@
@

@
2 ::

�
�

�

@
@

@
3 ::

�
�

�

@
@

@
2 nil

Graph for [2,3,2]

::
�

�
�

@
@

@
2 nil

Graph for [2]

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 5/9

List constructors: [], nil and ::

Lists are generated as follows:

• the empty list is a list, designated [] or nil

• if x is an element and xs is a list,
then so is x :: xs (type consistency)

:: associate to the right, i.e. x1::x2::xs

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/9

List constructors: [], nil and ::

Lists are generated as follows:

• the empty list is a list, designated [] or nil

• if x is an element and xs is a list,
then so is x :: xs (type consistency)

:: associate to the right, i.e. x1::x2::xs means x1::(x2::xs)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/9

List constructors: [], nil and ::

Lists are generated as follows:

• the empty list is a list, designated [] or nil

• if x is an element and xs is a list,
then so is x :: xs (type consistency)

:: associate to the right, i.e. x1::x2::xs means x1::(x2::xs)

::
�

�
�

@
@

@
x1 ::

�
�

�

@
@

@
x2 xs

Graph for x1::x2::xs

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/9

Recursion on lists – a simple example

suml[x1,x2, . . .,xn] =

n∑

i=1

xi = x1 + x2 + · · · + xn = x1 +

n∑

i=2

xi

Constructors are used in list patterns
fun suml [] = 0

| suml(x::xs) = x + suml xs
> val suml = fn : int list -> int

suml [1,2]

 1 + suml [2] (x 7→ 1 and xs 7→ [2])

 1 + (2 + suml []) (x 7→ 2 and xs 7→ [])

 1 + (2 + 0) (the pattern [] matches the value [])

 1 + 2

 3

Recursion follows the structure of lists
02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 7/9

Infix functions

It is possible to declare infix functions in SML, i.e. the function
symbol is between the arguments.

The prefix function on lists, e.g. [1, 2, 3]<<==[1, 2, 3, 4] = true, is
declared as follows:

infix 3 <<==

fun [] <<== ys = true
| xs <<== [] = false
| (x::xs) <<== (y::ys) = x=y andalso xs <<== ys;

• the infix directive allows the function symbol to occur between
the arguments.

• 3 is in this case the precedence of the symbol

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 8/9

Examples

• remove(x, ys) : removes all occurrences of x in the list ys

• length xs : the length of the list xs (is a predefined function).

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 9/9

	Overview
	Lists
	Lists
	Lists
	Lists
	Lists
	Lists

	The type constructor: 	exttt {list}
	The type constructor: 	exttt {list}
	The type constructor: 	exttt {list}
	The type constructor: 	exttt {list}
	The type constructor: 	exttt {list}
	The type constructor: 	exttt {list}

	Trees for lists
	Trees for lists

	List constructors: 	exttt {[]}, 	exttt {nil} and 	exttt {::}
	List constructors: 	exttt {[]}, 	exttt {nil} and 	exttt {::}
	List constructors: 	exttt {[]}, 	exttt {nil} and 	exttt {::}

	Recursion on lists -- a simple example
	Infix functions
	Examples

