
Functional Programming
Records, Lists and Modelling

Aske W. Brekling
awb@imm.dtu.dk

Informatics and Mathematical Modelling

Technical University of Denmark

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 1/14



Overview

In the lecture room:

• Records: Patterns, Selectors, Functions, Type Declarations

• Modelling: CD Register - Use of record and list patterns

• Modelling: Cash Register - Problem Solving

In the G-databar:

• Exercise 6.2 - Dating Bureau

• Exercise 6.3 - Map-colouring

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 2/14



Records: Declarations, Selectors

Record declaration - {label1 = value1, label2 = value2, ...}

- val a = {name = "Peter", age = 20};

> val a = {age=20,name="Peter"} :

{age:int, name:string}

The record a contains the string Peter with label name, and the
integer 20 with label age.

Record selector - #labeli record

- #name a;

> val it = "Peter" : string

Selects the value from the record a with label name

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 3/14



Records: Patterns

Record patterns - {label1 = val1, label2 = val2, ...}

- val {name = x, age = y} = a;

> val x = "Peter" : string

val y = 20 : int

Patterns are used to decompose a record into its components

Short form record patterns - {label1, label2, ...}

- val {name, age} = a;

> val name = "Peter" : string

val age = 20 : int

Used instead of:
- val{name = name, age = age} = a;

> val name = "Peter" : string

val age = 20 : int

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 4/14



Records: Functions

Equality - record1 = record2

- {age = 20, name = "Peter"} =

{name = "Peter", age = 20};

> val it = true : bool

Equality of records with the same type is defined component-wise.
Order has no importance. Comparison only allowed for same-type
records.

Wild card - ...

- val {name = x, ...} = a;

> val x = "Peter" : string

Record patterns may contain some of the labels only - used when
only some components are needed. Useful for handling data with
many components and functions only using a fraction of them.

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 5/14



Records: Type Declarations

Type declaration - {label1 : type1, label2 : type2, ...}

- type person = {age : int, birthday : int * int,

name : string, occupation : string, sex : string };

> type person = {age : int, birthday : int * int,

name : string, occupation : string, sex : string}

Data for a person represented by the record type person

Functions on records
- fun age(p: person) = #age p;

> val age = fn : {age : int, birthday : int * int,

name : string, occupation : string, sex : string}

-> int

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 6/14



Modelling example: CD Register

We want to model a register describing CDs. Each CD is described
by its title, artist, record company, year and the songs on the

disc.

We might want to construct functions only using some of the
components, therefore modelling CDs as records with the
aforementioned components would be good. We name this record
type: cd

It makes sense to model the title, artist and company

components as strings, the year as an integer and the songs as a
string list.

The full register is modelled as a cd list

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 7/14



Modelling example: CD Register (decl.)

Type declaration of CD registers:
type cd = {title: string, artist: string,

company: string, year: int,

songs: string list};

type cdRegister = cd list;

Example of a CD register:
val cdreg = [{title="t1", artist="a1", company="c1",

year=93, songs=["s1","s2","s3","s4"]},

{title="t2", artist="a2", company="c2",

year=91, songs=["s6","s7","s8","s9"]},

{title="t3", artist="a1", company="c2",

year=94, songs=["s10","s11","s12"]}

];

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 8/14



Modelling example: CD Register (functions)

Functions on CD registers:
fun titles(_, []: cdRegister) = []

| titles(a, {artist, title, ...}::cdreg) =

if a=artist then title::titles(a, cdreg)

else titles(a, cdreg);

- titles("a1", cdreg);

> val it = ["t1", "t3"] : string list

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 9/14



Modelling example: Cash Register

We make a program for a simple cash register.

• A data register associates the name and price of the article to
each valid article code.

• A purchase is a sequence of items, each item describes the
purchase of a number of pieces of a specific article

• Construct a program which makes a bill of a purchase. Each
item on the bill must contain the name of the article, the
number of pieces and the total price. Also, the bill must
contain the grand total for the entire purchase.

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 10/14



Modelling example: Cash Register (decl.)

type articleCode = string

type articleName = string

type noPieces = int

type price = int

type register = (articleCode *
(articleName * price)) list

type item = noPieces * articleCode

type purchase= item list

type info = noPieces * articleName * price

type infoseq = info list

type bill = infoseq * price

exception FindArticle

makeBill: purchase * register -> bill

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 11/14



Modelling example: Cash Register (functions)

fun findArticle(ac, (ac’,adesc)::reg) =

if ac=ac’ then adesc

else findArticle(ac,reg)

| findArticle _ =

raise FindArticle;

fun makeBill([], _) = ([],0)

| makeBill((np,ac)::pur, reg) =

let val (aname,aprice) = findArticle(ac,reg)

val tprice = np*aprice

val (billtl,sumtl) = makeBill(pur,reg)

in ((np,aname,tprice)::billtl, tprice+sumtl)

end;

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 12/14



Modelling example: Cash Register (testing)

- val register =

[("a1",("cheese",25)),

("a2",("herring",4)),

("a3",("soft drink",5))

];

> val register =

[("a1", ("cheese", 25)), ("a2", ("herring", 4)),

("a3", ("soft drink", 5))]

: (string * (string * int)) list

- val pur = [(3,"a2"),(1,"a1")];

> val pur = [(3, "a2"), (1, "a1")]

: (int * string) list

- makeBill(pur,register);

> val it = ([(3, "herring", 12),

(1, "cheese", 25)], 37)

: (int * string * int) list * int

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 13/14



Exercises - Modelling

• 6.2 - Dating Bureau

• 6.3 - Map-colouring

Next Friday:
One-day project: Piecewise linear curves
In the databar from 8:15 to 12
Prepare by reading the problem formulation on the course
homepage: www.imm.dtu.dk/courses/02153

02153 Declarative Modelling c©Aske W. Brekling, Fall 2007 – p. 14/14


	Overview
	Records: Declarations, Selectors
	Records: Patterns
	Records: Functions
	Records: Type Declarations
	Modelling example: CD Register
	Modelling example: CD Register (decl.)
	Modelling example: CD Register (functions)
	Modelling example: Cash Register
	Modelling example: Cash Register (decl.)
	Modelling example: Cash Register (functions)
	Modelling example: Cash Register (testing)
	Exercises - Modelling

