
Lazy Lists in SML
Sieve of Eratosthenes

Michael R. Hansen
mrh@imm.dtu.dk

Informatics and Mathematical Modelling

Technical University of Denmark

c©Michael R. Hansen, 02153 Declarative Modelling, Fall 2007 – p. 1/8



Lazy Lists

• lazy evaluation or delayed evaluation is the technique of delaying
a computation until the result of the computation is needed.

Default in lazy languages like Haskell

A special form of this is lazy lists, where the elements are not
evaluated until their values are required by the rest of the program.

• lazy lists may be infinite

c©Michael R. Hansen, 02153 Declarative Modelling, Fall 2007 – p. 2/8



Lazy Lists

• lazy evaluation or delayed evaluation is the technique of delaying
a computation until the result of the computation is needed.

Default in lazy languages like Haskell

A special form of this is lazy lists, where the elements are not
evaluated until their values are required by the rest of the program.

• lazy lists may be infinite
a finite part of a lazy list may be used in computations

c©Michael R. Hansen, 02153 Declarative Modelling, Fall 2007 – p. 2/8



Lazy Lists

• lazy evaluation or delayed evaluation is the technique of delaying
a computation until the result of the computation is needed.

Default in lazy languages like Haskell

A special form of this is lazy lists, where the elements are not
evaluated until their values are required by the rest of the program.

• lazy lists may be infinite
a finite part of a lazy list may be used in computations

Example:

• Consider the sequence of all prime numbers

• the first 5 are 2,3,5,7,11
Sieve of Eratosthenes

c©Michael R. Hansen, 02153 Declarative Modelling, Fall 2007 – p. 2/8



Lazy Lists in SML

A lazy list or sequence is represented in SML by the head of the
sequence, and a function for computing its (possibly infinite) tail:

datatype ’a seq = Empty
| Cons of ’a * (unit -> ’a seq);

The function seqFrom i represents the sequence i, i + 1, i + 2, . . .:

fun seqFrom i = Cons(i, fn () => seqFrom(i+1));

• the delay of the computation of i + 1, i + 2, . . . is obtained by the
function fn () => seqFrom(i + 1)

c©Michael R. Hansen, 02153 Declarative Modelling, Fall 2007 – p. 3/8



Functions on sequences (I)

Head and Tail of sequences:

fun hdSeq(Cons(x,_)) = x;

fun tlSeq(Cons(_, xt)) = xt();

Examples:

val nat = seqFrom 0;
> val nat = Cons(0, fn) : int seq

hdSeq nat;
> vat it = 0 : int

tlSeq nat;
> val it = Cons(1, fn) : int seq

c©Michael R. Hansen, 02153 Declarative Modelling, Fall 2007 – p. 4/8



Functions on sequences (II)

Take and drop elements of sequences:

fun takeSeq(0, _) = []
| takeSeq(_, Empty) = []
| takeSeq(i, Cons(n,xt)) = n :: takeSeq(i-1, xt());

fun dropSeq(0, xs) = xs
| dropSeq(i, Cons(_, xt)) = dropSeq(i-1, xt());

takeSeq(5, nat);
> val it = [0,1,2,3,4] : int list

dropSeq(5, nat);
> val it = Cons(5, fn) : int seq

c©Michael R. Hansen, 02153 Declarative Modelling, Fall 2007 – p. 5/8



Functions on sequences (III)

A higher-order function on sequences:

fun filterSeq p Empty = Empty
| filterSeq p (Cons(x, xt)) =

if p x then Cons(x, fn () => filterSeq p (xt()))
else filterSeq p (xt());

val even = filterSeq (fn n => n mod 2 = 0) nat;

takeSeq(5, even);
> val it = [0, 2, 4, 6, 8] : int list

c©Michael R. Hansen, 02153 Declarative Modelling, Fall 2007 – p. 6/8



Sieve of Eratosthenes

Greek mathematician (194 – 176 BC)

Computation of prime numbers

• start with the sequence 2, 3, 4, 5, 6, ...

select head (2), and remove multiples of 2 from the sequence
2

• next sequence 3, 5, 7, 9, 11, ...

select head (3), and remove multiples of 3 from the sequence
2, 3

• next sequence 5, 7, 11, 13, 17, ...

select head (5), and remove multiples of 5 from the sequence
2, 3, 5

•

...

c©Michael R. Hansen, 02153 Declarative Modelling, Fall 2007 – p. 7/8



Sieve of Eratosthenes in SML

Remove multiples of a from sequence ns:

fun sift a ns = filterSeq (fn n => n mod a <> 0) ns;

Select head and remove multiples of head from the tail – recursively:

fun sieve(Cons(n, nt)) =
Cons(n, fn () => sieve(sift n (nt())));

The sequence of prime numbers and the n’th prime number:

val primes = sieve(seqFrom 2);
fun primeN n = hdSeq(dropSeq(n-1, primes));

primeN 1000;
> val it = 7919 : int

c©Michael R. Hansen, 02153 Declarative Modelling, Fall 2007 – p. 8/8


	Lazy Lists
	Lazy Lists
	Lazy Lists

	Lazy Lists in SML
	Functions on sequences (I)
	Functions on sequences (II)
	Functions on sequences (III)
	Sieve of Eratosthenes
	Sieve of Eratosthenes in SML

