
Function Programming
Interpreter for a simple imperative language

Introduction and Exercise
Michael R. Hansen

mrh@imm.dtu.dk

Informatics and Mathematical Modelling

Technical University of Denmark

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 1/10



A simple interpreter

To show the power of a functional programming language, we
present a prototype for an interpreter for a simple WHILE language.

• Abstract syntax (parse trees): defined by algebraic datatypes

• Semantics, i.e. meaning of programs: inductively defined
following the structure of the abstract syntax.

The interpreter for a simple imperative programming language is
a function:

I : Program ∗ State → State

Short presentation of files needed for scanning and parsing:
— input to mosmllex and mosmlyac

succinct programs, fast prototyping

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 2/10



Before lunch

You can read a programs like fact from a file:

y:=1 ; while !x=1 do(y:= y * x;x:=x-1)

and parse it like:

val fact = parsef "factorial.while";

Furthermore, you can run programs like:

val s = [("x",4)]
I(fact,s);

where y is (hopefully) 4! = 24 in the resulting state.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/10



Arithmetic Expressions

• Abstract syntax for expressions:

datatype aExp = ( * arithmetical expressions * )
N of int ( * numbers * )

| V of string ( * variables * )
| ++ of aExp * aExp ( * addition * )
| ** of aExp * aExp ( * multiplication * )
| -- of aExp * aExp; ( * subtraction * )

• Infix directives:

infix 7 ** ;
infix 6 ++ -- ;

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/10



Semantics of Arithmetic Expressions

A state associates integers with variables
type State = (string * int) list ( * for now * )

Operations on the state:
update: (string * int * state) -> state
get: string * state -> int

The meaning of an expression is a function:
A: aExp * State -> int

defined inductively on the structure of arithmetic expressions
fun A(N n,s) = n

| A(V x,s) = get(x,s)
| A(a1 ++ a2,s) = A(a1,s) + A(a2,s)
| A(a1 ** a2,s) = A(a1,s) * A(a2,s)
| A(a1 -- a2,s) = A(a1,s) - A(a2,s);

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 5/10



Boolean Expressions

• Abstract syntax

datatype bExp = ( * boolean expressions * )
TT ( * true * )

| FF ( * false * )
| == of .... ( * equality * )
| << of .... ( * smaller than * )
| !! of .... ( * negation * )
| && of .... ( * conjunction * )

infix 4 == << ;
infix 3 && ;

• Semantics B : bExp * State -> bool

fun B(TT, s) = true
| B(FF, s) = false
....

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/10



Statements: Abstract Syntax

datatype stm =
<- of string * aExp ( * assignment * )

| Skip
| ˆˆ of stm * stm ( * sequential composition * )
| ITE of bExp * stm * stm ( * if-then-else * )
| While of bExp * stm ( * while * )

infix 2 <- ;
infix 0 ˆˆ ;

Example of concrete syntax:
y:=1 ; while !(x=1) do (y:= y * x ; x:=x-1)

Abstract syntax ?

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 7/10



Interpreter for Statements

• The meaning of statements is a function
I: stm * State -> State defined by induction on the
structure of statements:

fun I(x <- a, s) = update(x,A(a,s),s)
| I(Skip, s) = ...
| I(stm1 ˆˆ stm2, s) = ...
| I(ITE(b,stm1,stm2), s) = ...
| I(While(b, stm), s) = ...

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 8/10



Example: Factorial function

val fact = "y" <- N 1
ˆˆ While(!!(V "x" == N 1),

"y" <- V "y" ** V "x"
ˆˆ "x" <- V "x" -- N 1);

val s = [("x",4)]

val s’ = I(fact, s);

get("y", s’);
> val it = 24 : int

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 9/10



Exercises

• Complete the program skeleton (from the homepage) for the
interpreter.

• Extend it with if-then and repeat-until statements

• Suppose that an expression of the form inc(x) is added. It adds
one to the value of x in the current state, and the value of the
expression is this new value of x.
How should the interpreter be refined to cope with this
construct?

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 10/10



Exercises

• Complete the program skeleton (from the homepage) for the
interpreter.

• Extend it with if-then and repeat-until statements

• Suppose that an expression of the form inc(x) is added. It adds
one to the value of x in the current state, and the value of the
expression is this new value of x.
How should the interpreter be refined to cope with this
construct?

Consider the files for scanning and parsing on the homepage.

• Extend the concrete syntax to deal with some of the above
constructs and revise the the input to mosmllex and mosmlyac
accordingly. (Only small extensions should be necessary.)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 10/10


	A simple interpreter
	Before lunch
	Arithmetic Expressions
	Semantics of Arithmetic Expressions
	Boolean Expressions
	Statements: Abstract Syntax
	Interpreter for Statements
	Example: Factorial function
	Exercises
	Exercises


