Introduction to SML Getting Started

Michael R. Hansen

mrh@imm.dtu.dk

Informatics and Mathematical Modelling
Technical University of Denmark

Some Background on Functional Programmir

In functional programming, the model of computation is the application of functions to arguments.

Some Background on Functional Programmir

In functional programming, the model of computation is the application of functions to arguments.
no side-effects

- Introduction of λ-calculus around 1930 by Church and Kleene when investigating function definition, function application, recursion and computable functions. For example, $f(x)=x+2$ is represented by $\lambda x . x+2$.

Some Background on Functional Programmir

In functional programming, the model of computation is the application of functions to arguments.
no side-effects

- Introduction of λ-calculus around 1930 by Church and Kleene when investigating function definition, function application, recursion and computable functions. For example, $f(x)=x+2$ is represented by $\lambda x . x+2$.
- Introduction of the type-less functional-like programming language LISP was developed by McCarthy in the late 1950s.

Some Background on Functional Programmir

In functional programming, the model of computation is the application of functions to arguments.
no side-effects

- Introduction of λ-calculus around 1930 by Church and Kleene when investigating function definition, function application, recursion and computable functions. For example, $f(x)=x+2$ is represented by $\lambda x . x+2$.
- Introduction of the type-less functional-like programming language LISP was developed by McCarthy in the late 1950s.
- Introduction of the "variable-free" programming language FP (Backus 1977), by providing a rich collection of functionals (combining forms for functions).

Some Background on Functional Programmir

In functional programming, the model of computation is the application of functions to arguments.
no side-effects

- Introduction of λ-calculus around 1930 by Church and Kleene when investigating function definition, function application, recursion and computable functions. For example, $f(x)=x+2$ is represented by $\lambda x . x+2$.
- Introduction of the type-less functional-like programming language LISP was developed by McCarthy in the late 1950s.
- Introduction of the "variable-free" programming language FP (Backus 1977), by providing a rich collection of functionals (combining forms for functions).
- Introduction of functional languages with a strong type system like ML (by Milner) and Miranda (by Turner) in the 1970s.

Some Background on SML

- Standard Meta Language (SML) was originally designed for theorem proving

Logic for Computable Functions (Edinburgh LCF) Gordon, Milner, Wadsworth (1977)

Some Background on SML

- Standard Meta Language (SML) was originally designed for theorem proving

Logic for Computable Functions (Edinburgh LCF) Gordon, Milner, Wadsworth (1977)

- High quality compilers, e.g. Standard ML of New Jersey and Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 \& 1997

Some Background on SML

- Standard Meta Language (SML) was originally designed for theorem proving

Logic for Computable Functions (Edinburgh LCF) Gordon, Milner, Wadsworth (1977)

- High quality compilers, e.g. Standard ML of New Jersey and Moscow ML, based on a formal semantics Milner, Tofte, Harper, MacQueen 1990 \& 1997
- SML have now applications far away from its origins Compilers, Artificial Intelligence, Web-applications, ...

Some Background on SML

- Standard Meta Language (SML) was originally designed for theorem proving

Logic for Computable Functions (Edinburgh LCF) Gordon, Milner, Wadsworth (1977)

- High quality compilers, e.g. Standard ML of New Jersey and Moscow ML, based on a formal semantics Milner, Tofte, Harper, MacQueen 1990 \& 1997
- SML have now applications far away from its origins Compilers, Artificial Intelligence, Web-applications, ...
- Systems are now available on the .net platform (e.g. sml.net and F\# (sml-like))

Some Background on SML

- Standard Meta Language (SML) was originally designed for theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

- High quality compilers, e.g. Standard ML of New Jersey and Moscow ML, based on a formal semantics Milner, Tofte, Harper, MacQueen 1990 \& 1997
- SML have now applications far away from its origins Compilers, Artificial Intelligence, Web-applications, ...
- Systems are now available on the .net platform (e.g. sml.net and F\# (sml-like))
- Often used to teach high-level programming concepts

Special Features

SML supports

- Functions as first class citizens

Special Features

SML supports

- Functions as first class citizens
- Structured values like lists, trees, ...

Special Features

SML supports

- Functions as first class citizens
- Structured values like lists, trees, . . .
- Strong and flexible type discipline, including
type inference and polymorphism

Special Features

SML supports

- Functions as first class citizens
- Structured values like lists, trees, ...
- Strong and flexible type discipline, including
type inference and polymorphism
- Powerful module system supporting abstract data types

Special Features

SML supports

- Functions as first class citizens
- Structured values like lists, trees, . . .
- Strong and flexible type discipline, including
type inference and polymorphism
- Powerful module system supporting abstract data types
- Imperative programming assignments, loops, arrays, Input/Output, etc.

Special Features

SML supports

- Functions as first class citizens
- Structured values like lists, trees, ...
- Strong and flexible type discipline, including type inference and polymorphism
- Powerful module system supporting abstract data types
- Imperative programming assignments, loops, arrays, Input/Output, etc.

Programming as a modelling discipline

- High-level programming, declarative programming, executable declarative specifications

B, Z, VDM, RAISE

- Fast prototyping correctness, time-to-market, program designs

Overview: Part I

- The interactive environment
- Values, expressions, types, patterns
- Declarations of values and recursive functions
- Binding, environment and evaluation
- Type inference

Overview: Part I

- The interactive environment
- Values, expressions, types, patterns
- Declarations of values and recursive functions
- Binding, environment and evaluation
- Type inference

GOAL: By the end of the first part you have constructed succinct, elegant and understandable SML programs, e.g. for

- $\operatorname{sum}(m, n)=\sum_{i=m}^{n} i$
- Fibonacci numbers ($\left.F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}\right)$
- Binomial coefficients $\binom{n}{k}$

The Interactive Environment

$$
\begin{aligned}
& 2 \star 3+4 ; \\
& \text { val it }=10 \text { : int }
\end{aligned}
$$

The Interactive Environment

```
\(2 * 3+4 ;\)
val it \(=10\) : int
```

\Leftarrow Input to the SML system
\Leftarrow Answer from the SML system

The Interactive Environment

```
2*3 +4;
val it = 10 : int
```

\Leftarrow Input to the SML system
\Leftarrow Answer from the SML system

- The keyword val indicates a value is computed
- The integer 10 is the computed value
- int is the type of the computed value
- The identifier it names the (last) computed value

The Interactive Environment

```
2*3 +4;
val it = 10 : int
```

\Leftarrow Input to the SML system
\Leftarrow Answer from the SML system

- The keyword val indicates a value is computed
- The integer 10 is the computed value
- int is the type of the computed value
- The identifier it names the (last) computed value

The notion binding explains which entities are named by identifiers.

$$
\text { it } \mapsto 10 \text { reads: "it is bound to } 10 \text { " }
$$

Value Declarations

A value declaration has the form: val identifier $=$ expression

$$
\begin{array}{ll}
\text { val price }=25 * 5 ; & \Leftarrow \text { A declaration as input } \\
\text { val price }=125: \text { int } & \Leftarrow \text { Answer from the SML system }
\end{array}
$$

The effect of a declaration is a binding

Value Declarations

A value declaration has the form: val identifier $=$ expression

$$
\begin{array}{ll}
\text { val price }=25 * 5 ; & \Leftarrow \text { A declaration as input } \\
\text { val price }=125: \text { int } & \Leftarrow \text { Answer from the SML system }
\end{array}
$$

The effect of a declaration is a binding
Bound identifiers can be used in expressions and declarations, e.g.

```
val newPrice = 2*price;
val newPrice = 250 : int
newPrice > 500;
val it = false : bool
```


Value Declarations

A value declaration has the form: val identifier $=$ expression

$$
\begin{array}{ll}
\text { val price }=25 * 5 ; & \Leftarrow \text { A declaration as input } \\
\text { val price }=125: \text { int } & \Leftarrow \text { Answer from the SML system }
\end{array}
$$

The effect of a declaration is a binding
Bound identifiers can be used in expressions and declarations, e.g.

```
```

val newPrice = 2*price;

```
```

val newPrice = 2*price;
val newPrice = 250 : int
val newPrice = 250 : int
newPrice > 500;
newPrice > 500;
val it = false : bool

```
```

val it = false : bool

```
```


A collection of bindings

$\left[\begin{array}{lll}\text { price } & \mapsto & 125 \\ \text { newPrice } & \mapsto & 250 \\ \text { it } & \mapsto & \text { false }\end{array}\right]$
is called an environment

Function Declarations 1: fun $f x=e$

Declaration of the circle area function:
fun circleArea r = Math.pi * r * r;

- Math is a program library
- pi is an identifier (with type real) for π declared in Math

Function Declarations 1: fun $f x=e$

Declaration of the circle area function:

$$
\text { fun circleArea } r=\text { Math.pi } * r * r \text {; }
$$

- Math is a program library
- pi is an identifier (with type real) for π declared in Math

The type is automatically inferred in the answer:

$$
\text { val circleArea }=\text { fn : real }->\text { real }
$$

Function Declarations 1: fun $f x=e$

Declaration of the circle area function:

$$
\text { fun circleArea } r=\text { Math.pi } * r * r \text {; }
$$

- Math is a program library
- pi is an identifier (with type real) for π declared in Math

The type is automatically inferred in the answer:

$$
\text { val circleArea }=\text { fn : real }->\text { real }
$$

Applications of the function:

$$
\begin{aligned}
& \text { circleArea } 1.0 ;(* \text { this is a comment } *) \\
& \text { val it }=3.14159265359: \text { real } \\
& \text { circleArea }(3.2) ;(* \text { brackets are optional } *) \\
& \text { val it }=32.1699087728: \text { real }
\end{aligned}
$$

Recursion: $n!=1 \cdot 2 \cdot \ldots \cdot n, n \geq 0$

Mathematical definition:

$$
\begin{align*}
& 0!=1 \tag{i}\\
& n!=n \cdot(n-1)!, \text { for } n>0 \tag{ii}
\end{align*}
$$

Computation:

$$
\begin{align*}
& 3! \\
= & 3 \cdot(3-1)! \tag{ii}\\
= & 3 \cdot 2 \cdot(2-1)! \tag{ii}\\
= & 3 \cdot 2 \cdot 1 \cdot(1-1)! \\
= & 3 \cdot 2 \cdot 1 \cdot 1 \tag{i}\\
= & 6
\end{align*}
$$

Recursive declaration: n !

Function declaration:

$$
\begin{aligned}
\text { fun fact } 0 & =1 \\
\mid & \text { fact } n=n \text { tact }(n-1) \\
\text { val fact }=\text { fn : int }->\text { int } & \text { (* ii *) }
\end{aligned}
$$

Evaluation:

$$
\begin{align*}
& \operatorname{fact}(3) \\
\rightsquigarrow & 3 * \operatorname{fact}(3-1) \tag{ii}
\end{align*}
$$

Recursive declaration: n !

Function declaration:

```
fun fact \(0=1\)
    | fact \(n=n\) * fact ( \(\mathrm{n}-1\) ) (* ii *)
val fact \(=f n\) : int \(->\) int
```

Evaluation:

$$
\begin{aligned}
& \text { fact(3) } \\
& \rightsquigarrow 3 * \operatorname{fact}(3-1) \\
& \rightsquigarrow 3 * 2 * \operatorname{fact}(2-1) \\
& \text { (ii) }[\mathrm{n} \mapsto 2] \\
& \rightsquigarrow 3 * 2 * 1 * \operatorname{fact}(1-1) \\
& \text { (ii) }[\mathrm{n} \mapsto 1] \\
& \rightsquigarrow 3 * 2 * 1 * 1 \\
& \text { (i) }[\mathrm{n} \mapsto 0] \\
& \rightsquigarrow 6 \\
& \text { (ii) }[\mathrm{n} \mapsto 3] \\
& \text { (ii) }[\mathrm{n} \mapsto 2] \\
& \text { (ii) }[\mathrm{n} \mapsto 1] \\
& \text { (i) }[\mathrm{n} \mapsto 0]
\end{aligned}
$$

Recursion: $x^{n}=x \cdot \ldots \cdot x, n$ occurrences of x

Mathematical definition:

$$
\begin{align*}
& x^{0}=1 \tag{1}\\
& x^{n}=x \cdot x^{n-1}, \text { for } n>0 \tag{2}
\end{align*}
$$

Function declaration:

$$
\begin{aligned}
\text { fun } \operatorname{power}(,, 0) & =1.0 \\
\mid \operatorname{power}(\mathrm{x}, \mathrm{n}) & =\mathrm{x} \text { * power }(\mathrm{x}, \mathrm{n}-1)
\end{aligned} \quad\left(\begin{array}{ll}
\text { (} 1 \text { *) } \\
\text { (* } 2 \text { *) }
\end{array}\right.
$$

Patterns:
$(, 0)$ matches any pair of the form ($x, 0$).
The wildcard pattern _ matches any value.
(x, n) matches any pair ($u, i)$ yielding the bindings

$$
\mathrm{x} \longmapsto \mathrm{u}, \mathrm{n} \longmapsto i
$$

Evaluation: power (4.0, 2)

Function declaration:

$$
\begin{aligned}
\text { fun power }\left(_, 0\right) & =1.0
\end{aligned} \quad\left(\begin{array}{ll}
* & *
\end{array}\right)
$$

Evaluation:

```
        power(4.0,2)
\rightsquigarrow.0*\operatorname{power}(4.0,2-1)
Clause 2, [x\mapsto4.0, n\mapsto2]
\leadsto4.0*\operatorname{power}(4.0,1)
\leadsto4.0*(4.0* power(4.0,1-1)) Clause 2, [x\mapsto4.0,n\mapsto1]
\leadsto4.0*(4.0*\operatorname{power}(4.0,0))
\leadsto4.0*(4.0*1)
\leadsto 16.0
```

Clause 2, $[\mathrm{x} \mapsto 4.0, \mathrm{n} \mapsto 2]$

Clause 2, $[\mathrm{x} \mapsto 4.0, \mathrm{n} \mapsto 1]$

Clause 1

If-then-else expressions

Form:

$$
\text { if } b \text { then } e_{1} \text { else } e_{2}
$$

Evaluation rules:

$$
\begin{aligned}
& \text { if true then } e_{1} \text { else } e_{2} \leadsto e_{1} \\
& \text { if false then } e_{1} \text { else } e_{2} \rightsquigarrow e_{2}
\end{aligned}
$$

Alternative declarations:

$$
\begin{aligned}
\text { fun fact } n= & \text { if } n=0 \text { then } 1 \\
& \text { else } n \text { *act }(n-1) ;
\end{aligned} \quad \begin{aligned}
\text { fun } \operatorname{power}(x, n)= & \text { if } n=0 \text { then } 1.0 \\
& \text { else } x * \operatorname{power}(x, n-1) ;
\end{aligned}
$$

If-then-else expressions

Form:

$$
\text { if } b \text { then } e_{1} \text { else } e_{2}
$$

Evaluation rules:

$$
\begin{aligned}
& \text { if true then } e_{1} \text { else } e_{2} \leadsto e_{1} \\
& \text { if false then } e_{1} \text { else } e_{2} \rightsquigarrow e_{2}
\end{aligned}
$$

Alternative declarations:

$$
\begin{aligned}
\text { fun fact } n= & \text { if } n=0 \text { then } 1 \\
& \text { else } n \text { fact }(n-1) ; \\
\text { fun power }(x, n)= & \text { if } n=0 \text { then } 1.0 \\
& \text { else } x * \operatorname{power}(x, n-1) ;
\end{aligned}
$$

Use of clauses and patterns often give more understandable programs

Booleans

Type name bool
Values false, true

Operator	Type	
not	bool $->$ bool	negation

$$
\begin{aligned}
& \text { not true }=\text { false } \\
& \text { not false }=\text { true }
\end{aligned}
$$

Expressions

$$
\begin{array}{ll}
e_{1} \text { andalso } e_{2} & \text { "conjunction } e_{1} \wedge e_{2} " \\
e_{1} \text { orelse } e_{2} & \text { "disjunction } e_{1} \vee e_{2} "
\end{array}
$$

— are lazily evaluated, e.g.

$$
\begin{aligned}
& 1<2 \text { orelse } 5 / 0=1 \\
& \rightsquigarrow \text { true }
\end{aligned}
$$

Precedence: andalse has higher than orelse

Strings

Type name string
Values "abcd", " ", "", "123\"321" (escape sequence for ")

Operator	Type	
size	string -> int	length of string
string*string -> string	concatenation	
$=\ll=\ldots$	string*string $->$ bool	comparisons
Int.toString	int $->$ string	conversions

Examples

- "auto" < "car";
> val it = true : bool
- "abc"^"de";
> val it = "abcde": string
- size("abc"^"def");
> val it $=6$: int
- Int.toString(6+18);
> val it = "24" : strir

Types - every expression has a type e $: \tau$

Basic types:

	type name	example of values
Integers	int	$\sim 27,0,15,21000$
Reals	real	$\sim 27.3,0.0,48.21$
Booleans	bool	true, false

Pairs:
If $e_{1}: \tau_{1}$ and $e_{2}: \tau_{2}$
then (e_{1}, e_{2}): $\tau_{1} * \tau_{2} \quad$ pair (tuple) type constructor

Types - every expression has a type e $: \tau$

Basic types:

	type name	example of values
Integers	int	$\sim 27,0,15,21000$
Reals	real	$\sim 27.3,0.0,48.21$
Booleans	bool	true, false

Pairs:
If $e_{1}: \tau_{1}$ and $e_{2}: \tau_{2}$
then (e_{1}, e_{2}): $\tau_{1} * \tau_{2} \quad$ pair (tuple) type constructor
Functions: if $f: \tau_{1}->\tau_{2}$ and $a: \tau_{1} \quad$ function type constructor then $f(a): \tau_{2}$

Examples:

```
(4.0, 2): real*int
power: real*int -> real
power(4.0, 2): real
```


Types - every expression has a type e $: \tau$

Basic types:

	type name	example of values
Integers	int	$\sim 27,0,15,21000$
Reals	real	$\sim 27.3,0.0,48.21$
Booleans	bool	true, false

Pairs:
If $e_{1}: \tau_{1}$ and $e_{2}: \tau_{2}$
then (e_{1}, e_{2}): $\tau_{1} * \tau_{2} \quad$ pair (tuple) type constructor
Functions: if $f: \tau_{1} \rightarrow \tau_{2}$ and $a: \tau_{1} \quad$ function type constructor then $f(a): \tau_{2}$

Examples:

```
    (4.0, 2): real*int
power(4.0, 2): real
```

power: real*int -> real * has higher precedence that ->

Type inference: power

$$
\begin{aligned}
\text { fun power }\left(_, 0\right) & =1.0 \\
\mid & (* 1 *) \\
\mid & \text { power }(x, n)
\end{aligned}=x * \operatorname{power}(x, n-1) \quad(* 2 \star)
$$

Type inference: power

$$
\begin{aligned}
\text { fun power }\left(_, 0\right) & =1.0 \\
\mid & (* 1 *) \\
\mid & \text { power }(x, n)
\end{aligned}=x * \operatorname{power}(x, n-1) \quad(* 2 *)
$$

- The type of the function must have the form: $\tau_{1} * \tau_{2}->\tau_{3}$, because argument is a pair.

Type inference: power

$$
\begin{aligned}
& \text { fun power }\left(_, 0\right)=1.0 \\
& \mid \operatorname{power}(x, n)=x * \operatorname{power}(x, n-1) \\
&(* 2 *) \\
&(* 2 *)
\end{aligned}
$$

- The type of the function must have the form: $\tau_{1} * \tau_{2}->\tau_{3}$, because argument is a pair.
- $\tau_{3}=$ real because 1.0:real
(Clause 1, function value.)

Type inference: power

$$
\begin{aligned}
& \text { fun power }\left(_, 0\right)=1.0 \\
& \mid \operatorname{power}(x, n)=x * \operatorname{power}(x, n-1) \\
&(* 2 *)
\end{aligned}
$$

- The type of the function must have the form: $\tau_{1} * \tau_{2}->\tau_{3}$, because argument is a pair.
- $\tau_{3}=$ real because 1.0:real
(Clause 1, function value.)
- $\tau_{2}=$ int because 0 :int.

Type inference: power

$$
\begin{aligned}
& \text { fun power }\left(_, 0\right)=1.0 \\
& \mid(* 1 *) \\
& \operatorname{power}(x, n)=x * \operatorname{power}(x, n-1) \\
&(* 2 *)
\end{aligned}
$$

- The type of the function must have the form: $\tau_{1} * \tau_{2}->\tau_{3}$, because argument is a pair.
- $\tau_{3}=$ real because 1.0:real
(Clause 1, function value.)
- $\tau_{2}=$ int because 0 :int.
- x *power $(x, n-1)$:real, because $\tau_{3}=$ real.

Type inference: power

$$
\begin{aligned}
& \text { fun power }\left(_, 0\right)=1.0 \\
& \mid \operatorname{power}(x, n)=x * \operatorname{power}(x, n-1) \\
&(* 2 *)
\end{aligned}
$$

- The type of the function must have the form: $\tau_{1} * \tau_{2}->\tau_{3}$, because argument is a pair.
- $\tau_{3}=$ real because 1.0:real
(Clause 1, function value.)
- $\tau_{2}=$ int because 0 :int.
- x *power $(x, n-1)$:real, because $\tau_{3}=$ real.
- multiplication can have
int*int -> int or real*real -> real
as types, but no "mixture" of int and real

Type inference: power

$$
\begin{aligned}
& \text { fun power }\left(_, 0\right)=1.0 \\
& \mid \operatorname{power}(x, n)=x * \operatorname{power}(x, n-1) \\
&(* 2 *)
\end{aligned}
$$

- The type of the function must have the form: $\tau_{1} * \tau_{2}->\tau_{3}$, because argument is a pair.
- $\tau_{3}=$ real because 1.0:real (Clause 1, function value.)
- $\tau_{2}=$ int because 0 :int.
- x *power $(x, n-1)$:real, because $\tau_{3}=$ real.
- multiplication can have
int*int -> int or real*real -> real
as types, but no "mixture" of int and real
- Therefore x:real and $\tau_{1}=r e a l$.

Type inference: power

$$
\begin{aligned}
& \text { fun power }\left(_, 0\right)=1.0 \\
& \mid \operatorname{power}(x, n)=x * \operatorname{power}(x, n-1) \\
&(* 2 *)
\end{aligned}
$$

- The type of the function must have the form: $\tau_{1} * \tau_{2}->\tau_{3}$, because argument is a pair.
- $\tau_{3}=$ real because 1.0:real
(Clause 1, function value.)
- $\tau_{2}=$ int because 0 :int.
- $x *$ power $(x, n-1)$:real, because $\tau_{3}=$ real.
- multiplication can have
int*int -> int or real*real -> real
as types, but no "mixture" of int and real
- Therefore $\mathrm{x}:$ real and $\tau_{1}=r e a l$.

The SML system determines the type real*int -> real

Summary

- The interactive environment
- Values, expressions, types, patterns
- Declarations of values and recursive functions
- Binding, environment and evaluation
- Type inference

Breath first round through many concepts aiming at program construction from the first day.

We will go deaper into each of the concepts later in the course.

