
Introduction to SML
Getting Started

Michael R. Hansen
mrh@imm.dtu.dk

Informatics and Mathematical Modelling

Technical University of Denmark

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 1/18

Some Background on Functional Programming

In functional programming, the model of computation is the
application of functions to arguments. no side-effects

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 2/18

Some Background on Functional Programming

In functional programming, the model of computation is the
application of functions to arguments. no side-effects

• Introduction of λ-calculus around 1930 by Church and Kleene
when investigating function definition, function application,
recursion and computable functions. For example, f(x) = x + 2

is represented by λx.x + 2.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 2/18

Some Background on Functional Programming

In functional programming, the model of computation is the
application of functions to arguments. no side-effects

• Introduction of λ-calculus around 1930 by Church and Kleene
when investigating function definition, function application,
recursion and computable functions. For example, f(x) = x + 2

is represented by λx.x + 2.

• Introduction of the type-less functional-like programming
language LISP was developed by McCarthy in the late 1950s.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 2/18

Some Background on Functional Programming

In functional programming, the model of computation is the
application of functions to arguments. no side-effects

• Introduction of λ-calculus around 1930 by Church and Kleene
when investigating function definition, function application,
recursion and computable functions. For example, f(x) = x + 2

is represented by λx.x + 2.

• Introduction of the type-less functional-like programming
language LISP was developed by McCarthy in the late 1950s.

• Introduction of the "variable-free" programming language FP
(Backus 1977), by providing a rich collection of functionals
(combining forms for functions).

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 2/18

Some Background on Functional Programming

In functional programming, the model of computation is the
application of functions to arguments. no side-effects

• Introduction of λ-calculus around 1930 by Church and Kleene
when investigating function definition, function application,
recursion and computable functions. For example, f(x) = x + 2

is represented by λx.x + 2.

• Introduction of the type-less functional-like programming
language LISP was developed by McCarthy in the late 1950s.

• Introduction of the "variable-free" programming language FP
(Backus 1977), by providing a rich collection of functionals
(combining forms for functions).

• Introduction of functional languages with a strong type system
like ML (by Milner) and Miranda (by Turner) in the 1970s.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 2/18

Some Background on SML

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/18

Some Background on SML

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/18

Some Background on SML

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

• SML have now applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, . . .

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/18

Some Background on SML

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

• SML have now applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, . . .

• Systems are now available on the .net platform (e.g. sml.net and
F# (sml-like))

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/18

Some Background on SML

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

• SML have now applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, . . .

• Systems are now available on the .net platform (e.g. sml.net and
F# (sml-like))

• Often used to teach high-level programming concepts

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/18

Special Features

SML supports

• Functions as first class citizens

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/18

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/18

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/18

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

• Powerful module system supporting abstract data types

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/18

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

• Powerful module system supporting abstract data types

• Imperative programming
assignments, loops, arrays, Input/Output, etc.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/18

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

• Powerful module system supporting abstract data types

• Imperative programming
assignments, loops, arrays, Input/Output, etc.

Programming as a modelling discipline

• High-level programming, declarative programming, executable
declarative specifications B, Z, VDM, RAISE

• Fast prototyping correctness, time-to-market, program designs

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/18

Overview: Part I

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 5/18

Overview: Part I

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

GOAL: By the end of the first part you have constructed succinct,
elegant and understandable SML programs, e.g. for

• sum(m, n) =
∑

n

i=m
i

• Fibonacci numbers (F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2)

• Binomial coefficients

(

n

k

)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 5/18

The Interactive Environment

2* 3 +4;
val it = 10 : int

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/18

The Interactive Environment

2* 3 +4;
val it = 10 : int

⇐ Input to the SML system

⇐ Answer from the SML system

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/18

The Interactive Environment

2* 3 +4;
val it = 10 : int

⇐ Input to the SML system

⇐ Answer from the SML system

• The keyword val indicates a value is computed

• The integer 10 is the computed value

• int is the type of the computed value

• The identifier it names the (last) computed value

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/18

The Interactive Environment

2* 3 +4;
val it = 10 : int

⇐ Input to the SML system

⇐ Answer from the SML system

• The keyword val indicates a value is computed

• The integer 10 is the computed value

• int is the type of the computed value

• The identifier it names the (last) computed value

The notion binding explains which entities are named by identifiers.

it 7→ 10 reads: “it is bound to 10”

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/18

Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5;

val price = 125 : int

⇐ A declaration as input

⇐ Answer from the SML system

The effect of a declaration is a binding price 7→ 125

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 7/18

Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5;

val price = 125 : int

⇐ A declaration as input

⇐ Answer from the SML system

The effect of a declaration is a binding price 7→ 125

Bound identifiers can be used in expressions and declarations, e.g.

val newPrice = 2 * price;
val newPrice = 250 : int

newPrice > 500;
val it = false : bool

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 7/18

Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5;

val price = 125 : int

⇐ A declaration as input

⇐ Answer from the SML system

The effect of a declaration is a binding price 7→ 125

Bound identifiers can be used in expressions and declarations, e.g.

val newPrice = 2 * price;
val newPrice = 250 : int

newPrice > 500;
val it = false : bool

A collection of bindings

price 7→ 125

newPrice 7→ 250

it 7→ false

is called an environment

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 7/18

Function Declarations 1: fun f x = e

Declaration of the circle area function:
fun circleArea r = Math.pi * r * r;

• Math is a program library

• pi is an identifier (with type real) for π declared in Math

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 8/18

Function Declarations 1: fun f x = e

Declaration of the circle area function:
fun circleArea r = Math.pi * r * r;

• Math is a program library

• pi is an identifier (with type real) for π declared in Math

The type is automatically inferred in the answer:
val circleArea = fn : real -> real

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 8/18

Function Declarations 1: fun f x = e

Declaration of the circle area function:
fun circleArea r = Math.pi * r * r;

• Math is a program library

• pi is an identifier (with type real) for π declared in Math

The type is automatically inferred in the answer:
val circleArea = fn : real -> real

Applications of the function:
circleArea 1.0; (* this is a comment *)
val it = 3.14159265359 : real

circleArea(3.2); (* brackets are optional *)
val it = 32.1699087728 : real

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 8/18

Recursion: n! = 1 · 2 · . . . · n, n ≥ 0

Mathematical definition: recursion formula

0! = 1 (i)

n! = n · (n − 1)!, for n > 0 (ii)

Computation:

3!

= 3 · (3 − 1)! (ii)

= 3 · 2 · (2 − 1)! (ii)

= 3 · 2 · 1 · (1 − 1)! (ii)

= 3 · 2 · 1 · 1 (i)

= 6

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 9/18

Recursive declaration: n!

Function declaration:
fun fact 0 = 1 (* i *)

| fact n = n * fact(n-1) (* ii *)
val fact = fn : int -> int

Evaluation:

fact (3)

 3 ∗ fact (3 − 1) (ii)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 10/18

Recursive declaration: n!

Function declaration:
fun fact 0 = 1 (* i *)

| fact n = n * fact(n-1) (* ii *)
val fact = fn : int -> int

Evaluation:

fact (3)

 3 ∗ fact (3 − 1) (ii) [n 7→ 3]

 3 ∗ 2 ∗ fact (2 − 1) (ii) [n 7→ 2]

 3 ∗ 2 ∗ 1 ∗ fact (1 − 1) (ii) [n 7→ 1]

 3 ∗ 2 ∗ 1 ∗ 1 (i) [n 7→ 0]

 6

e1 e2 reads: e1 evaluates to e2

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 10/18

Recursion: xn = x · . . . · x, n occurrences of x

Mathematical definition: recursion formula

x0 = 1 (1)

xn = x · xn−1, for n > 0 (2)

Function declaration:
fun power(_,0) = 1.0 (* 1 *)

| power(x,n) = x * power(x,n-1) (* 2 *)

Patterns:

(, 0) matches any pair of the form (x, 0).
The wildcard pattern _ matches any value.

(x , n) matches any pair (u, i) yielding the bindings

x 7→ u, n 7→ i

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 11/18

Evaluation: power(4.0, 2)

Function declaration:
fun power(_,0) = 1.0 (* 1 *)

| power(x,n) = x * power(x,n-1) (* 2 *)

Evaluation:

power (4.0, 2)

 4.0 ∗ power (4.0, 2 − 1) Clause 2, [x 7→ 4.0, n 7→ 2]

 4.0 ∗ power (4.0, 1)

 4.0 ∗ (4.0 ∗ power (4.0, 1 − 1)) Clause 2, [x 7→ 4.0, n 7→ 1]

 4.0 ∗ (4.0 ∗ power (4.0, 0))

 4.0 ∗ (4.0 ∗ 1) Clause 1

 16.0

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 12/18

If-then-else expressions

Form:
if b then e1 else e2

Evaluation rules:

if true then e1 else e2 e1

if false then e1 else e2 e2

Alternative declarations:
fun fact n = if n=0 then 1

else n * fact(n-1);

fun power(x,n) = if n=0 then 1.0

else x * power(x,n-1);

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 13/18

If-then-else expressions

Form:
if b then e1 else e2

Evaluation rules:

if true then e1 else e2 e1

if false then e1 else e2 e2

Alternative declarations:
fun fact n = if n=0 then 1

else n * fact(n-1);

fun power(x,n) = if n=0 then 1.0

else x * power(x,n-1);

Use of clauses and patterns often give more understandable
programs

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 13/18

Booleans

Type name bool

Values false , true

Operator Type

not bool -> bool negation

not true = false

not false = true

Expressions

e1 andalso e2 “conjunction e1 ∧ e2”

e1 orelse e2 “disjunction e1 ∨ e2”

— are lazily evaluated, e.g.
1<2 orelse 5/0 = 1

 true

Precedence: andalse has higher than orelse

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 14/18

Strings

Type name string

Values "abcd" , " " , "" , "123 \" 321" (escape sequence for ")

Operator Type

size string -> int length of string

ˆ string * string -> string concatenation

= < <= ... string * string -> bool comparisons

Int.toString int -> string conversions

Examples

- "auto" < "car";
> val it = true : bool

- "abc"ˆ"de";
> val it = "abcde": string

- size("abc"ˆ"def");
> val it = 6 : int

- Int.toString(6+18);
> val it = "24" : string

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 15/18

Types — every expression has a type e : τ

Basic types:

type name example of values

Integers int ˜ 27, 0, 15, 21000

Reals real ˜ 27.3, 0.0, 48.21

Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 16/18

Types — every expression has a type e : τ

Basic types:

type name example of values

Integers int ˜ 27, 0, 15, 21000

Reals real ˜ 27.3, 0.0, 48.21

Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor

Functions:
if f : τ1 -> τ2 and a : τ1 function type constructor

then f(a) : τ2

Examples:

(4.0, 2): real * int
power: real * int -> real
power(4.0, 2): real

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 16/18

Types — every expression has a type e : τ

Basic types:

type name example of values

Integers int ˜ 27, 0, 15, 21000

Reals real ˜ 27.3, 0.0, 48.21

Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor

Functions:
if f : τ1 -> τ2 and a : τ1 function type constructor

then f(a) : τ2

Examples:

(4.0, 2): real * int
power: real * int -> real
power(4.0, 2): real

* has higher precedence that ->

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 16/18

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 17/18

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 17/18

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 17/18

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int .

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 17/18

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int .

• x* power(x,n-1):real , because τ3 = real .

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 17/18

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int .

• x* power(x,n-1):real , because τ3 = real .

• multiplication can have

int * int -> int or real * real -> real

as types, but no “mixture” of int and real

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 17/18

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int .

• x* power(x,n-1):real , because τ3 = real .

• multiplication can have

int * int -> int or real * real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real .

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 17/18

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int .

• x* power(x,n-1):real , because τ3 = real .

• multiplication can have

int * int -> int or real * real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real .

The SML system determines the type real * int -> real

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 17/18

Summary

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

Breath first round through many concepts aiming at program
construction from the first day.

We will go deaper into each of the concepts later in the course.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 18/18

	Some Background on Functional Programming
	Some Background on Functional Programming
	Some Background on Functional Programming
	Some Background on Functional Programming
	Some Background on Functional Programming

	Some Background on SML
	Some Background on SML
	Some Background on SML
	Some Background on SML
	Some Background on SML

	Special Features
	Special Features
	Special Features
	Special Features
	Special Features
	Special Features

	Overview: Part I
	Overview: Part I

	The Interactive Environment
	The Interactive Environment
	The Interactive Environment
	The Interactive Environment

	Value Declarations
	Value Declarations
	Value Declarations

	Function Declarations 1: $mathtt {fun} f, x = e$
	Function Declarations 1: $mathtt {fun} f, x = e$
	Function Declarations 1: $mathtt {fun} f, x = e$

	Recursion: $n! = 1 cdot 2 cdot ldots cdot n$, $ngeq 0$
	Recursive declaration: $n!$
	Recursive declaration: $n!$

	Recursion: $x^n = x cdot ldots cdot x$, n occurrences of x
	Evaluation: 	exttt {power(4.0, 2)}
	If-then-else expressions
	If-then-else expressions

	Booleans
	Strings
	Types --- every expression has a type $e : 	au $
	Types --- every expression has a type $e : 	au $
	Types --- every expression has a type $e : 	au $

	Type inference: 	exttt {power}
	Type inference: 	exttt {power}
	Type inference: 	exttt {power}
	Type inference: 	exttt {power}
	Type inference: 	exttt {power}
	Type inference: 	exttt {power}
	Type inference: 	exttt {power}
	Type inference: 	exttt {power}

	Summary

