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Some Background on Functional Programming

In functional programming, the model of computation is the
application of functions to arguments. no side-effects
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Some Background on Functional Programming

In functional programming, the model of computation is the
application of functions to arguments. no side-effects

• Introduction of λ-calculus around 1930 by Church and Kleene
when investigating function definition, function application,
recursion and computable functions. For example, f(x) = x + 2

is represented by λx.x + 2.

• Introduction of the type-less functional-like programming
language LISP was developed by McCarthy in the late 1950s.

• Introduction of the "variable-free" programming language FP
(Backus 1977), by providing a rich collection of functionals
(combining forms for functions).

• Introduction of functional languages with a strong type system
like ML (by Milner) and Miranda (by Turner) in the 1970s.
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Some Background on SML

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)
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Some Background on SML

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

• SML have now applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, . . .

• Systems are now available on the .net platform (e.g. sml.net and
F# (sml-like))

• Often used to teach high-level programming concepts
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Special Features

SML supports

• Functions as first class citizens
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Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

• Powerful module system supporting abstract data types

• Imperative programming
assignments, loops, arrays, Input/Output, etc.

Programming as a modelling discipline

• High-level programming, declarative programming, executable
declarative specifications B, Z, VDM, RAISE

• Fast prototyping correctness, time-to-market, program designs
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Overview: Part I

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference
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Overview: Part I

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

GOAL: By the end of the first part you have constructed succinct,
elegant and understandable SML programs, e.g. for

• sum(m, n) =
∑

n

i=m
i

• Fibonacci numbers (F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2)

• Binomial coefficients

(

n

k

)
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The Interactive Environment

2* 3 +4;
val it = 10 : int
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The Interactive Environment

2* 3 +4;
val it = 10 : int

⇐ Input to the SML system

⇐ Answer from the SML system

• The keyword val indicates a value is computed

• The integer 10 is the computed value

• int is the type of the computed value

• The identifier it names the (last) computed value
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The Interactive Environment

2* 3 +4;
val it = 10 : int

⇐ Input to the SML system

⇐ Answer from the SML system

• The keyword val indicates a value is computed

• The integer 10 is the computed value

• int is the type of the computed value

• The identifier it names the (last) computed value

The notion binding explains which entities are named by identifiers.

it 7→ 10 reads: “it is bound to 10”
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Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5;

val price = 125 : int

⇐ A declaration as input

⇐ Answer from the SML system

The effect of a declaration is a binding price 7→ 125
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Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5;

val price = 125 : int

⇐ A declaration as input

⇐ Answer from the SML system

The effect of a declaration is a binding price 7→ 125

Bound identifiers can be used in expressions and declarations, e.g.

val newPrice = 2 * price;
val newPrice = 250 : int

newPrice > 500;
val it = false : bool
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Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5;

val price = 125 : int

⇐ A declaration as input

⇐ Answer from the SML system

The effect of a declaration is a binding price 7→ 125

Bound identifiers can be used in expressions and declarations, e.g.

val newPrice = 2 * price;
val newPrice = 250 : int

newPrice > 500;
val it = false : bool

A collection of bindings






price 7→ 125

newPrice 7→ 250

it 7→ false







is called an environment
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Function Declarations 1: fun f x = e

Declaration of the circle area function:
fun circleArea r = Math.pi * r * r;

• Math is a program library

• pi is an identifier (with type real ) for π declared in Math
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Function Declarations 1: fun f x = e

Declaration of the circle area function:
fun circleArea r = Math.pi * r * r;

• Math is a program library

• pi is an identifier (with type real ) for π declared in Math

The type is automatically inferred in the answer:
val circleArea = fn : real -> real

Applications of the function:
circleArea 1.0; ( * this is a comment * )
val it = 3.14159265359 : real

circleArea(3.2); ( * brackets are optional * )
val it = 32.1699087728 : real
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Recursion: n! = 1 · 2 · . . . · n, n ≥ 0

Mathematical definition: recursion formula

0! = 1 (i)

n! = n · (n − 1)!, for n > 0 (ii)

Computation:

3!

= 3 · (3 − 1)! (ii)

= 3 · 2 · (2 − 1)! (ii)

= 3 · 2 · 1 · (1 − 1)! (ii)

= 3 · 2 · 1 · 1 (i)

= 6

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 9/18



Recursive declaration: n!

Function declaration:
fun fact 0 = 1 ( * i * )

| fact n = n * fact(n-1) ( * ii * )
val fact = fn : int -> int

Evaluation:

fact (3)

 3 ∗ fact (3 − 1) (ii)
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Recursive declaration: n!

Function declaration:
fun fact 0 = 1 ( * i * )

| fact n = n * fact(n-1) ( * ii * )
val fact = fn : int -> int

Evaluation:

fact (3)

 3 ∗ fact (3 − 1) (ii) [n 7→ 3]

 3 ∗ 2 ∗ fact (2 − 1) (ii) [n 7→ 2]

 3 ∗ 2 ∗ 1 ∗ fact (1 − 1) (ii) [n 7→ 1]

 3 ∗ 2 ∗ 1 ∗ 1 (i) [n 7→ 0]

 6

e1  e2 reads: e1 evaluates to e2
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Recursion: xn = x · . . . · x, n occurrences of x

Mathematical definition: recursion formula

x0 = 1 (1)

xn = x · xn−1, for n > 0 (2)

Function declaration:
fun power(_,0) = 1.0 ( * 1 * )

| power(x,n) = x * power(x,n-1) ( * 2 * )

Patterns:

( , 0) matches any pair of the form (x, 0).
The wildcard pattern _ matches any value.

(x , n) matches any pair (u, i) yielding the bindings

x 7→ u, n 7→ i
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Evaluation: power(4.0, 2)

Function declaration:
fun power(_,0) = 1.0 ( * 1 * )

| power(x,n) = x * power(x,n-1) ( * 2 * )

Evaluation:

power (4.0, 2)

 4.0 ∗ power (4.0, 2 − 1) Clause 2, [x 7→ 4.0, n 7→ 2]

 4.0 ∗ power (4.0, 1)

 4.0 ∗ (4.0 ∗ power (4.0, 1 − 1)) Clause 2, [x 7→ 4.0, n 7→ 1]

 4.0 ∗ (4.0 ∗ power (4.0, 0))

 4.0 ∗ (4.0 ∗ 1) Clause 1

 16.0
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If-then-else expressions

Form:
if b then e1 else e2

Evaluation rules:

if true then e1 else e2  e1

if false then e1 else e2  e2

Alternative declarations:
fun fact n = if n=0 then 1

else n * fact(n-1);

fun power(x,n) = if n=0 then 1.0

else x * power(x,n-1);
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If-then-else expressions

Form:
if b then e1 else e2

Evaluation rules:

if true then e1 else e2  e1

if false then e1 else e2  e2

Alternative declarations:
fun fact n = if n=0 then 1

else n * fact(n-1);

fun power(x,n) = if n=0 then 1.0

else x * power(x,n-1);

Use of clauses and patterns often give more understandable
programs
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Booleans

Type name bool

Values false , true

Operator Type

not bool -> bool negation

not true = false

not false = true

Expressions

e1 andalso e2 “conjunction e1 ∧ e2”

e1 orelse e2 “disjunction e1 ∨ e2”

— are lazily evaluated, e.g.
1<2 orelse 5/0 = 1

 true

Precedence: andalse has higher than orelse
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Strings

Type name string

Values "abcd" , " " , "" , "123 \" 321" (escape sequence for " )

Operator Type

size string -> int length of string

ˆ string * string -> string concatenation

= < <= ... string * string -> bool comparisons

Int.toString int -> string conversions

Examples

- "auto" < "car";
> val it = true : bool

- "abc"ˆ"de";
> val it = "abcde": string

- size("abc"ˆ"def");
> val it = 6 : int

- Int.toString(6+18);
> val it = "24" : string
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Types — every expression has a type e : τ

Basic types:

type name example of values

Integers int ˜ 27, 0, 15, 21000

Reals real ˜ 27.3, 0.0, 48.21

Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor
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type name example of values

Integers int ˜ 27, 0, 15, 21000

Reals real ˜ 27.3, 0.0, 48.21

Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor

Functions:
if f : τ1 -> τ2 and a : τ1 function type constructor

then f(a) : τ2

Examples:

(4.0, 2): real * int
power: real * int -> real
power(4.0, 2): real
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Types — every expression has a type e : τ

Basic types:

type name example of values

Integers int ˜ 27, 0, 15, 21000

Reals real ˜ 27.3, 0.0, 48.21

Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor

Functions:
if f : τ1 -> τ2 and a : τ1 function type constructor

then f(a) : τ2

Examples:

(4.0, 2): real * int
power: real * int -> real
power(4.0, 2): real

* has higher precedence that ->
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Type inference: power

fun power(_,0) = 1.0 ( * 1 * )
| power(x,n) = x * power(x,n-1) ( * 2 * )
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• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.
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• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)
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Type inference: power

fun power(_,0) = 1.0 ( * 1 * )
| power(x,n) = x * power(x,n-1) ( * 2 * )

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int .
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Type inference: power

fun power(_,0) = 1.0 ( * 1 * )
| power(x,n) = x * power(x,n-1) ( * 2 * )

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int .

• x* power(x,n-1):real , because τ3 = real .

• multiplication can have

int * int -> int or real * real -> real

as types, but no “mixture” of int and real
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• τ2 = int because 0:int .
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Type inference: power

fun power(_,0) = 1.0 ( * 1 * )
| power(x,n) = x * power(x,n-1) ( * 2 * )

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int .

• x* power(x,n-1):real , because τ3 = real .

• multiplication can have

int * int -> int or real * real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real .

The SML system determines the type real * int -> real
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Summary

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

Breath first round through many concepts aiming at program
construction from the first day.

We will go deaper into each of the concepts later in the course.
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