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Informal introduction to Duration Calculus

A logic for declarative modelling of real-time properties

• Background

• A simple case study: Gas Burner

• A decidability result

• pointers to current focus
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Background

• Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
Bjørner Langmaack Hoare Olderog

• Project case study: Gas Burner Sørensen Ravn Rischel
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Duration of states
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• Logical Calculi, Applications, Mechanical Support

• Duration Calculus: A formal approach to real-time systems
Zhou Chaochen and Michael R. Hansen
Springer 2004
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Gas Burner example: Requirements

State variables modelling Gas and Flame:
G,F : Time → {0, 1}

State expression modelling that gas is Leaking
L =̂ G ∧ ¬F
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Gas Burner example: Requirements

State variables modelling Gas and Flame:
G,F : Time → {0, 1}

State expression modelling that gas is Leaking
L =̂ G ∧ ¬F

Requirement

• Gas must at most be leaking 1/20 of the elapsed time

(e− b) ≥ 60 s ⇒ 20
∫e

b
L(t)dt ≤ (e− b)
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Gas Burner example: Design decisions

• Leaks are detectable and stoppable within 1s:

∀c, d : b ≤ c < d ≤ e.(L[c, d] ⇒ (d− c) ≤ 1 s)

where

P [c, d] =̂
∫d

c
P (t) = (d− c) > 0

which reads “P holds throughout [c, d]”
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Gas Burner example: Design decisions

• Leaks are detectable and stoppable within 1s:

∀c, d : b ≤ c < d ≤ e.(L[c, d] ⇒ (d− c) ≤ 1 s)

where

P [c, d] =̂
∫d

c
P (t) = (d− c) > 0

which reads “P holds throughout [c, d]”

• At least 30s between leaks:

∀c, d, r, s : b ≤ c < r < s < d ≤ e.

(L[c, r] ∧ ¬L[r, s] ∧ L[s, d]) ⇒ (s− r) ≥ 30 s
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: θ ::= x | v | θ1 + θn | . . . Temporal Variable
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: θ ::= x | v | θ1 + θn | . . . Temporal Variable

v : Intv → R

Formulas: φ ::= θ1 = θn | ¬φ | φ ∨ ψ | φ⌢ψ | (∃x)φ | . . . chop

φ : Intv → {tt,ff}

02153 Declarative Modelling, December, 2007, Michael R. Hansen – p. 6/22



Interval Logic [Halpern Moszkowski Manna 83]

Terms: θ ::= x | v | θ1 + θn | . . . Temporal Variable

v : Intv → R

Formulas: φ ::= θ1 = θn | ¬φ | φ ∨ ψ | φ⌢ψ | (∃x)φ | . . . chop

φ : Intv → {tt,ff}

Chop:

φ⌢ψ
︷ ︸︸ ︷
b m e
︸ ︷︷ ︸

φ
︸ ︷︷ ︸

ψ
for some m : b ≤ m ≤ e
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: θ ::= x | v | θ1 + θn | . . . Temporal Variable

v : Intv → R

Formulas: φ ::= θ1 = θn | ¬φ | φ ∨ ψ | φ⌢ψ | (∃x)φ | . . . chop

φ : Intv → {tt,ff}

Chop:

φ⌢ψ
︷ ︸︸ ︷
b m e
︸ ︷︷ ︸

φ
︸ ︷︷ ︸

ψ
for some m : b ≤ m ≤ e

In DC: Intv = { [a, b] | a, b ∈ R ∧ a ≤ b}
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Duration Calculus [Zhou Hoare Ravn 91]

• State variables P : Time → {0, 1} Finite Variability

• State expressions S ::= 0 | 1 | P | ¬S | S1 ∨ S2

S : Time → {0, 1} pointwise defined
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Duration Calculus [Zhou Hoare Ravn 91]

• State variables P : Time → {0, 1} Finite Variability

• State expressions S ::= 0 | 1 | P | ¬S | S1 ∨ S2

S : Time → {0, 1} pointwise defined

• Durations
∫
S : Intv → R defined on [b, e] by

∫ e

b

S(t)dt

– Temporal variables with a structure
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Example: Gas Burner

Requirement
ℓ ≥ 60 ⇒ 20

∫
L ≤ ℓ

Design decisions

D1 =̂ �(⌈⌈L⌉⌉ ⇒ ℓ ≤ 1)

D2 =̂ �((⌈⌈L⌉⌉⌢⌈⌈¬L⌉⌉⌢⌈⌈L⌉⌉) ⇒ ℓ ≥ 30)

where ℓ denotes the length of the interval, and

♦φ =̂ true ⌢φ⌢true “for some sub-interval: φ”

�φ =̂ ¬♦¬φ “for all sub-intervals: φ”

⌈⌈P ⌉⌉ =̂
∫
P = ℓ ∧ ℓ > 0 “P holds throughout

a non-point interval”
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Example: Gas Burner

Requirement
ℓ ≥ 60 ⇒ 20

∫
L ≤ ℓ

Design decisions

D1 =̂ �(⌈⌈L⌉⌉ ⇒ ℓ ≤ 1)

D2 =̂ �((⌈⌈L⌉⌉⌢⌈⌈¬L⌉⌉⌢⌈⌈L⌉⌉) ⇒ ℓ ≥ 30)

where ℓ denotes the length of the interval, and

♦φ =̂ true ⌢φ⌢true “for some sub-interval: φ”

�φ =̂ ¬♦¬φ “for all sub-intervals: φ”

⌈⌈P ⌉⌉ =̂
∫
P = ℓ ∧ ℓ > 0 “P holds throughout

a non-point interval”

succinct formulation — no interval endpoints
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Decidability
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Decidability

What can’t the computer do for me ?
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Overview [Zhou Hansen Sestoft 93]

Restricted Duration Calculus :
• ⌈⌈S⌉⌉

• ¬φ, φ ∨ ψ, φ⌢ψ

Satisfiability is reduced to emptiness of regular languages

Hence decidable for both discrete and continuous time
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Overview [Zhou Hansen Sestoft 93]

Restricted Duration Calculus :
• ⌈⌈S⌉⌉

• ¬φ, φ ∨ ψ, φ⌢ψ

Satisfiability is reduced to emptiness of regular languages

Hence decidable for both discrete and continuous time

Even small extensions give undecidable subsets

RDC1 (Cont. time) RDC2 RDC3

• ℓ = r, ⌈⌈S⌉⌉

• ¬φ, φ∨ψ, φ⌢ψ

•
∫
S1 =

∫
S2

• ¬φ, φ∨ψ, φ⌢ψ

• ℓ = x, ⌈⌈S⌉⌉

• ¬φ, φ ∨ ψ, φ⌢ψ

• (∃x)φ
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Overview [Zhou Hansen Sestoft 93]

Restricted Duration Calculus :
• ⌈⌈S⌉⌉

• ¬φ, φ ∨ ψ, φ⌢ψ

Satisfiability is reduced to emptiness of regular languages

Hence decidable for both discrete and continuous time

Even small extensions give undecidable subsets

RDC1 (Cont. time) RDC2 RDC3

• ℓ = r, ⌈⌈S⌉⌉

• ¬φ, φ∨ψ, φ⌢ψ

•
∫
S1 =

∫
S2

• ¬φ, φ∨ψ, φ⌢ψ

• ℓ = x, ⌈⌈S⌉⌉

• ¬φ, φ ∨ ψ, φ⌢ψ

• (∃x)φ

How would you show such results?
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Decidability of RDC for Discrete Time

Satisfiability is reduced to emptiness of regular languages
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Decidability of RDC for Discrete Time

Satisfiability is reduced to emptiness of regular languages

Idea: a ∈ Σ describes a piece of an interpretation, e.g. P1 ∧¬P2 ∧ P3
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Decidability of RDC for Discrete Time

Satisfiability is reduced to emptiness of regular languages

Idea: a ∈ Σ describes a piece of an interpretation, e.g. P1 ∧¬P2 ∧ P3

Discrete time — one letter corresponds to one time unit

L(⌈⌈S⌉⌉) = (DNF (S))+

L(ϕ ∨ ψ) = L(ϕ) ∪ L(ψ)

L(¬ϕ) = Σ∗ \ L(ϕ)

L(ϕ⌢ψ) = L(ϕ)L(ψ)
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Decidability of RDC for Discrete Time

Satisfiability is reduced to emptiness of regular languages

Idea: a ∈ Σ describes a piece of an interpretation, e.g. P1 ∧¬P2 ∧ P3

Discrete time — one letter corresponds to one time unit

L(⌈⌈S⌉⌉) = (DNF (S))+

L(ϕ ∨ ψ) = L(ϕ) ∪ L(ψ)

L(¬ϕ) = Σ∗ \ L(ϕ)

L(ϕ⌢ψ) = L(ϕ)L(ψ)

• L(φ) is regular

• φ is satisfiable iff L(φ) 6= ∅

• Satisfiability problem for RDC is decidable non-elementary
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Example

• Is the formula (⌈⌈P ⌉⌉⌢⌈⌈P ⌉⌉) ⇒ ⌈⌈P ⌉⌉ valid for discrete time?
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Example

• Is the formula (⌈⌈P ⌉⌉⌢⌈⌈P ⌉⌉) ⇒ ⌈⌈P ⌉⌉ valid for discrete time?

• Σ = {{P}, {}}.
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Example

• Is the formula (⌈⌈P ⌉⌉⌢⌈⌈P ⌉⌉) ⇒ ⌈⌈P ⌉⌉ valid for discrete time?

• Σ = {{P}, {}}.

• We have

(⌈⌈P ⌉⌉⌢⌈⌈P ⌉⌉) ⇒ ⌈⌈P ⌉⌉ is valid

iff ¬((⌈⌈P ⌉⌉⌢⌈⌈P ⌉⌉) ⇒ ⌈⌈P ⌉⌉) is not satisfiable

iff (⌈⌈P ⌉⌉⌢⌈⌈P ⌉⌉) ∧ ¬⌈⌈P ⌉⌉ is not satisfiable

iff L1(⌈⌈P ⌉⌉
⌢⌈⌈P ⌉⌉) ∩ L1(¬⌈⌈P ⌉⌉) = {}

iff {{P}i | i ≥ 2} ∩ (Σ∗ \ {{P}i | i ≥ 1}) = {}

The last equality holds.
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Example

• Is the formula (⌈⌈P ⌉⌉⌢⌈⌈P ⌉⌉) ⇒ ⌈⌈P ⌉⌉ valid for discrete time?

• Σ = {{P}, {}}.

• We have

(⌈⌈P ⌉⌉⌢⌈⌈P ⌉⌉) ⇒ ⌈⌈P ⌉⌉ is valid

iff ¬((⌈⌈P ⌉⌉⌢⌈⌈P ⌉⌉) ⇒ ⌈⌈P ⌉⌉) is not satisfiable

iff (⌈⌈P ⌉⌉⌢⌈⌈P ⌉⌉) ∧ ¬⌈⌈P ⌉⌉ is not satisfiable

iff L1(⌈⌈P ⌉⌉
⌢⌈⌈P ⌉⌉) ∩ L1(¬⌈⌈P ⌉⌉) = {}

iff {{P}i | i ≥ 2} ∩ (Σ∗ \ {{P}i | i ≥ 1}) = {}

The last equality holds.

• Therefore, the formula is valid for discrete time.
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Hybrid Duration Calculus

Bolander Hansen Hansen 06-07

Improved expressivity at the same price
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Hybrid DC

Hybrid DC is Restricted Duration Calculus extended by:

• Nominals a — names a specific interval
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Hybrid DC

Hybrid DC is Restricted Duration Calculus extended by:

• Nominals a — names a specific interval G(a) = [ta, ua]

• Satisfaction operator a : φ — φ holds at a

• downarrow binder ↓a.φ holds if φ holds under the assumption
that a names the current interval.

• global modality Eφ holds if there is some interval where φ holds.

I, G, [t, u] |= a iff G(a) = [t, u]

I, G, [t, u] |= a : φ iff I, G,G(a) |= φ

I, G, [t, u] |= Eφ iff for some interval [v, w]: I, G, [v, w] |= φ

I, G, [t, u] |=↓a.φ iff I, G[ a := [t, u] ], [t, u] |= φ
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Expressibility: Neighbourhood RDC

Propositional neighbourhood logic:
ZhouHansen98,BaruaRoyZhou00

I, [t, u] |= ♦lφ iff I, [s, t] |= φ for some s ≤ t
I, [t, u] |= ♦rφ iff I, [u, v] |= φ for some v ≥ u

♦rφ︷ ︸︸ ︷
φ

︷ ︸︸ ︷
t u v

for some v ≥ u

φ
︷ ︸︸ ︷

♦lφ︷ ︸︸ ︷
s t u

for some s ≤ t
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Expressibility: Neighbourhood RDC

Propositional neighbourhood logic:
ZhouHansen98,BaruaRoyZhou00

I, [t, u] |= ♦lφ iff I, [s, t] |= φ for some s ≤ t
I, [t, u] |= ♦rφ iff I, [u, v] |= φ for some v ≥ u

♦rφ︷ ︸︸ ︷
φ

︷ ︸︸ ︷
t u v

for some v ≥ u

φ
︷ ︸︸ ︷

♦lφ︷ ︸︸ ︷
s t u

for some s ≤ t

can be embedded in Hybrid DC:

τ(♦lφ) = ↓a.E(φ⌢ a)
τ(♦rφ) = ↓a.E(a⌢ φ)
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Expressibility: Allen’s binary relations

All 13 (Allen) relations between two intervals are expressible. E.g.

a precedes b a meets b a overlaps b a finished by b a contains b a starts b

a
︷ ︸︸ ︷

︸ ︷︷ ︸

b

a
︷ ︸︸ ︷

︸ ︷︷ ︸

b

a
︷ ︸︸ ︷

︸ ︷︷ ︸

b

a
︷ ︸︸ ︷

︸ ︷︷ ︸

b

a
︷ ︸︸ ︷

︸ ︷︷ ︸

b

a
︷ ︸︸ ︷

︸ ︷︷ ︸

b

a precedes b a : ♦r(¬π ∧ ♦rb)

a meets b a : ♦rb

a overlaps b E(↓c.¬π ∧ a : (¬π⌢ c) ∧ b : (c⌢ ¬π))

a finished by b a : (¬π⌢ b)

a contains b a : (¬π⌢ b⌢ ¬π)

a starts b b : (a⌢ ¬π)
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Monadic second-order theory of order L<2

We reduce satisfiability of Hybrid Duration Calculus to satisfiability of
L<

2 . (Discrete as well as continuous time.)
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Monadic second-order theory of order L<2

We reduce satisfiability of Hybrid Duration Calculus to satisfiability of
L<

2 . (Discrete as well as continuous time.)

The formulas of L<
2 are constructed from:

• First-order variables ranged over by x, y, z, . . ..

• Second-order variables ranged over by P,Q,X, . . ..

02153 Declarative Modelling, December, 2007, Michael R. Hansen – p. 17/22



Monadic second-order theory of order L<2

We reduce satisfiability of Hybrid Duration Calculus to satisfiability of
L<

2 . (Discrete as well as continuous time.)

The formulas of L<
2 are constructed from:

• First-order variables ranged over by x, y, z, . . ..

• Second-order variables ranged over by P,Q,X, . . ..

The formulas are generated from the following grammar:
φ ::= x < y | x ∈ P | φ ∨ ψ | ¬φ | ∃xφ | ∃Pφ .
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Semantics of L<2

A structure (A,B,<) consists of a set A partially ordered by < and a
set B of Boolean-valued functions from A. An element b ∈ B can be
considered a, possibly infinite, subset of A.

• An interpretation I associates a member PI of B to every
second-order variable P .

• A valuation ν is a function assigning a member ν(x) of A to
every first-order variable x.

The semantic relation I, ν |= φ is then defined by:

I, ν |= x < y iff ν(x) < ν(y)
I, ν |= x ∈ P iff ν(x) ∈ PI

I, ν |= ¬φ iff I, ν 6|= φ
I, ν |= φ ∨ ψ iff I, ν |= φ or I, ν |= ψ
I, ν |= ∃xφ iff for some a ∈ A: I, ν[x := a] |= φ
I, ν |= ∃Pφ iff for some b ∈ B: I[P := b], ν |= φ
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Decidability results for L<2

Let ω = (N, 2N, <).

• L<
2 (ω) is decidable Büchi
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From Hybrid DC to L<2 (ω) — discrete time

• each state variable P corresponds to a second-order variable
denoted by P . Idea: i ∈ P iff P (t) = 1 in the interval ]i, i+ 1[.

• each nominal a is associated with two variables xa and ya.
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From Hybrid DC to L<2 (ω) — discrete time

• each state variable P corresponds to a second-order variable
denoted by P . Idea: i ∈ P iff P (t) = 1 in the interval ]i, i+ 1[.

• each nominal a is associated with two variables xa and ya.

Tx,y(π) = x = y

Tx,y(P ) = x < y ∧ ∀z(x ≤ z < y → z ∈ P )

Tx,y(¬φ) = ¬Tx,y(φ)

Tx,y(φ ∨ ψ) = Tx,y(φ) ∨ Tx,y(ψ)

Tx,y(φ
⌢ ψ) = ∃z(Tx,z(φ) ∧ Tz,y(φ) ∧ x ≤ z ∧ z ≤ y)

Tx,y(a) = x = xa ∧ y = ya

Tx,y(a : φ) = Txa,ya
(φ)

Tx,y(Eφ) = ∃x∃y(x ≤ y ∧ Tx,y(φ))

Tx,y(↓a.φ) = ∃xa∃ya(x = xa ∧ y = ya ∧ Tx,y(φ))
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Correctness of translation

Discrete time:

• φ is satisfiable in discrete-time Hybrid DC
iff Tx,y(φ) ∧ x ≤ y ∧

∧
a in φ xa ≤ ya is satisfiable in L<

2 (ω).

The decision problem is non-elementary
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Current focus

Model checking and deciding an interval logic with durations, aiming
at verification of durational properties like:

• Per day, the telephone network is down for at most 15 seconds∫
Down ≤ 15

• Total delay of message delivery across the network is less than
235ms Σi

∫
delay(mi) ≤ 235

• The lifetime of a system with two processors is at least k:




c1
∫
(A1 ∧ A2)

+ c2
∫
(A1 ∧ ¬A2)

+ c3
∫
(¬A1 ∧ A2)

+ c4
∫
(¬A1 ∧ ¬A2)




≥ e⇒ ℓ ≥ k

Involves theory, applications and implementation
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