Declarative modelling for timing The real-time logic: Duration Calculus

Michael R. Hansen

mrh@imm.dtu.dk

Informatics and Mathematical Modelling Technical University of Denmark

Informal introduction to Duration Calculus

A logic for declarative modelling of real-time properties

- Background
- A simple case study: Gas Burner
- A decidability result
- pointers to current focus

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
 Sørensen Ravn Rischel

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner Sørensen Ravn Rischel
 Intervals properties

Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, ...

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
 Sørensen Ravn Rischel

Intervals properties

Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, ...

Duration of states

Duration Calculus

Zhou Hoare Ravn 91

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner

Sørensen Ravn Rischel

Intervals properties

Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, ...

Duration of states

Duration Calculus

Zhou Hoare Ravn 91

— an Interval Temporal Logic

Halpern Moszkowski Manna

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner

Sørensen Ravn Rischel

Intervals properties

Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, ...

Duration of states

Duration CalculusZhou Hoare Ravn 91

- an Interval Temporal Logic Halpern Moszkowski Manna
- Logical Calculi, Applications, Mechanical Support
- Duration Calculus: A formal approach to real-time systems Zhou Chaochen and Michael R. Hansen Springer 2004

Gas Burner example: Requirements

State variables modelling Gas and Flame: $G, F : Time \rightarrow \{0, 1\}$

State expression modelling that gas is Leaking $L \, \widehat{=}\, G \wedge \neg F$

Gas Burner example: Requirements

State variables modelling Gas and Flame: $G, F : Time \rightarrow \{0, 1\}$

State expression modelling that gas is Leaking $L \ \widehat{=} \ G \land \neg F$

Requirement

Gas must at most be leaking 1/20 of the elapsed time

 $(e-b) \ge 60 \,\mathrm{s} \implies 20 \int_{b}^{e} \mathrm{L}(t) dt \le (e-b)$

Gas Burner example: Design decisions

• Leaks are detectable and stoppable within 1s:

$$\forall c, d : b \le c < d \le e.(\mathbf{L}[c, d] \implies (d - c) \le 1 \,\mathrm{s})$$

where

$$P[c,d] \cong \int_{c}^{d} P(t) = (d-c) > 0$$

which reads "P holds throughout [c, d]"

Gas Burner example: Design decisions

• Leaks are detectable and stoppable within 1s:

$$\forall c, d : b \le c < d \le e.(\mathbf{L}[c, d] \implies (d - c) \le 1 \,\mathrm{s})$$

where

$$P[c,d] \cong \int_{c}^{d} P(t) = (d-c) > 0$$

which reads "P holds throughout [c, d]"

• At least 30s between leaks:

$$\begin{aligned} \forall c, d, r, s : b &\leq c < r < s < d \leq e. \\ (\mathrm{L}[c, r] \wedge \neg \mathrm{L}[r, s] \wedge \mathrm{L}[s, d]) \Rightarrow (s - r) \geq 30 \, \mathrm{s} \end{aligned}$$

[Halpern Moszkowski Manna 83]

Terms: $\theta ::= x | v | \theta_1 + \theta_n | \dots$

Temporal Variable

Terms: $\theta ::= x | v | \theta_1 + \theta_n | \dots$ Temporal Variable

 $v: \mathbb{I}$ ntv $ightarrow \mathbb{R}$

Formulas: $\phi ::= \theta_1 = \theta_n | \neg \phi | \phi \lor \psi | \phi \frown \psi | (\exists x) \phi | \dots$ chop $\phi : Intv \to \{tt, ff\}$

Terms: $\theta ::= x | v | \theta_1 + \theta_n | ...$ $v : Intv \to \mathbb{R}$ Formulas: $\phi ::= \theta_1 = \theta_n | \neg \phi | \phi \lor \psi | \phi \frown \psi | (\exists x)\phi | ...$ $\phi : Intv \to \{tt, ff\}$

Chop:

for some $m: b \leq m \leq e$

Terms: $\theta ::= x | v | \theta_1 + \theta_n | ...$ $v : Intv \to \mathbb{R}$ Formulas: $\phi ::= \theta_1 = \theta_n | \neg \phi | \phi \lor \psi | \phi \frown \psi | (\exists x)\phi | ...$ $\phi : Intv \to \{tt, ff\}$

Chop:

Duration Calculus

• State variables $P : \mathbb{T}ime \rightarrow \{0, 1\}$

Finite Variability

- State expressions $S ::= 0 \mid 1 \mid P \mid \neg S \mid S_1 \lor S_2$
 - $S: \mathbb{T}ime \rightarrow \{0,1\}$ pointwise defined

Duration Calculus

• State variables $P : \mathbb{T}ime \rightarrow \{0, 1\}$

Finite Variability

• State expressions $S ::= 0 | 1 | P | \neg S | S_1 \lor S_2$

 $S: \mathbb{T}ime \to \{0, 1\}$ pointwise defined

- Durations $\int S : Intv \to \mathbb{R}$ defined on [b, e] by $\int_{b}^{e} S(t) dt$
 - Temporal variables with a structure

Example: Gas Burner

Requirement

 $\ell \ge 60 \implies 20 \int \mathbf{L} \le \ell$

Design decisions

$$D_1 \stackrel{\widehat{}}{=} \square(\llbracket L \rrbracket \Rightarrow \ell \le 1)$$

$$D_2 \stackrel{\widehat{}}{=} \square((\llbracket L \rrbracket \cap \llbracket \neg L \rrbracket \cap \llbracket L \rrbracket) \Rightarrow \ell \ge 30)$$

where ℓ denotes the *length* of the interval, and

$$\begin{aligned} &\Diamond \phi & \widehat{=} \text{ true } \frown \phi \frown \text{true} \\ &\Box \phi & \widehat{=} \neg \Diamond \neg \phi \\ &\llbracket P \rrbracket & \widehat{=} \int P = \ell \land \ell > 0 \end{aligned}$$

"for some sub-interval: ϕ " "for all sub-intervals: ϕ " "*P* holds throughout a non-point interval"

Example: Gas Burner

Requirement

 $\ell \ge 60 \implies 20 \int \mathbf{L} \le \ell$

Design decisions

$$D_1 \stackrel{\widehat{}}{=} \square(\llbracket L \rrbracket \Rightarrow \ell \le 1)$$

$$D_2 \stackrel{\widehat{}}{=} \square((\llbracket L \rrbracket \cap \llbracket \neg L \rrbracket \cap \llbracket L \rrbracket) \Rightarrow \ell \ge 30)$$

where ℓ denotes the *length* of the interval, and

$$\begin{aligned} & \Diamond \phi & \widehat{=} \text{ true } \frown \phi \frown \text{ true} \\ & \Box \phi & \widehat{=} \neg \Diamond \neg \phi \\ & \llbracket P \rrbracket & \widehat{=} \int P = \ell \land \ell > 0 \end{aligned}$$

"for some sub-interval: ϕ " "for all sub-intervals: ϕ " "*P* holds throughout a non-point interval"

succinct formulation — no interval endpoints

Decidability

What can't the computer do for me?

Overview

Restricted Duration Calculus :

• $\llbracket S \rrbracket$ • $\neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$

Satisfiability is reduced to emptiness of regular languages Hence decidable for both discrete and continuous time

Overview

Restricted Duration Calculus :

•
$$\llbracket S \rrbracket$$

• $\neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$

Satisfiability is reduced to emptiness of regular languages Hence decidable for both discrete and continuous time

Even small extensions give undecidable subsets

RDC_1 (Cont. time)	RDC_2	RDC_3
• $\ell = r$, $\llbracket S \rrbracket$ • $\neg \phi, \phi \lor \psi, \phi \frown \psi$	• $\int S_1 = \int S_2$ • $\neg \phi, \phi \lor \psi, \phi \frown \psi$	• $\ell = x, [S]$ • $\neg \phi, \phi \lor \psi, \phi \frown \psi$ • $(\exists x)\phi$

Overview

Restricted Duration Calculus :

•
$$\llbracket S \rrbracket$$

• $\neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$

Satisfiability is reduced to emptiness of regular languages Hence decidable for both discrete and continuous time

Even small extensions give undecidable subsets

RDC_1 (Cont. time)	RDC_2	RDC_3
• $\ell = r$, $\llbracket S \rrbracket$ • $\neg \phi, \phi \lor \psi, \phi \frown \psi$	• $\int S_1 = \int S_2$ • $\neg \phi, \phi \lor \psi, \phi \frown \psi$	• $\ell = x, [S]$ • $\neg \phi, \phi \lor \psi, \phi \frown \psi$ • $(\exists x)\phi$

How would you show such results?

Satisfiability is reduced to emptiness of regular languages

Satisfiability is reduced to emptiness of regular languages

Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \land \neg P_2 \land P_3$

Satisfiability is reduced to emptiness of regular languages

Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \land \neg P_2 \land P_3$

Discrete time — one letter corresponds to one time unit

$\mathcal{L}(\llbracket S \rrbracket)$	=	$(DNF(S))^+$
$\mathcal{L}(\varphi \lor \psi)$	=	$\mathcal{L}(\varphi) \cup \mathcal{L}(\psi)$
$\mathcal{L}(\neg arphi)$	=	$\Sigma^* \setminus \mathcal{L}(\varphi)$
$\mathcal{L}(arphi \psi)$	=	$\mathcal{L}(arphi)\mathcal{L}(\psi)$

Satisfiability is reduced to emptiness of regular languages

Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \land \neg P_2 \land P_3$

Discrete time — one letter corresponds to one time unit

$\mathcal{L}(\llbracket S \rrbracket)$	=	$(DNF(S))^+$
$\mathcal{L}(\varphi \lor \psi)$	=	$\mathcal{L}(\varphi) \cup \mathcal{L}(\psi)$
$\mathcal{L}(\neg arphi)$	=	$\Sigma^* \setminus \mathcal{L}(\varphi)$
$\mathcal{L}(arphi \psi)$	=	$\mathcal{L}(arphi)\mathcal{L}(\psi)$

- $\mathcal{L}(\phi)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\phi) \neq \emptyset$
- Satisfiability problem for *RDC* is decidable

non-elementary

• Is the formula $(\llbracket P \rrbracket \frown \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket$ valid for discrete time?

- Is the formula $(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket$ valid for discrete time?
- $\Sigma = \{\{P\}, \{\}\}.$

- Is the formula $(\llbracket P \rrbracket \frown \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket$ valid for discrete time?
- $\Sigma = \{\{P\}, \{\}\}.$
- We have

 $(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket \text{ is valid}$ $\text{iff } \neg((\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket) \text{ is not satisfiable}$ $\text{iff } (\llbracket P \rrbracket \cap \llbracket P \rrbracket) \land \neg \llbracket P \rrbracket \text{ is not satisfiable}$ $\text{iff } \mathcal{L}_1(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \cap \mathcal{L}_1(\neg \llbracket P \rrbracket) = \{\}$ $\text{iff } \{\{P\}^i \mid i \ge 2\} \cap (\Sigma^* \setminus \{\{P\}^i \mid i \ge 1\}) = \{\}$ The last equality holds.

- Is the formula $(\llbracket P \rrbracket \frown \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket$ valid for discrete time?
- $\Sigma = \{\{P\}, \{\}\}.$
- We have

 $(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket \text{ is valid}$ $\text{iff } \neg((\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket) \text{ is not satisfiable}$ $\text{iff } (\llbracket P \rrbracket \cap \llbracket P \rrbracket) \land \neg \llbracket P \rrbracket \text{ is not satisfiable}$ $\text{iff } \mathcal{L}_1(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \cap \mathcal{L}_1(\neg \llbracket P \rrbracket) = \{\}$ $\text{iff } \{\{P\}^i \mid i \ge 2\} \cap (\Sigma^* \setminus \{\{P\}^i \mid i \ge 1\}) = \{\}$ The last equality holds.

• Therefore, the formula is valid for discrete time.

Hybrid Duration Calculus

Bolander Hansen Hansen 06-07

Improved expressivity at the same price

Hybrid DC

Hybrid DC is Restricted Duration Calculus extended by:

• Nominals *a* — names a specific interval

Hybrid DC

Hybrid DC is Restricted Duration Calculus extended by:

- Nominals a names a specific interval $G(a) = [t_a, u_a]$
- Satisfaction operator $a : \phi \phi$ holds at a
- downarrow binder $\downarrow a.\phi$ holds if ϕ holds under the assumption that a names the current interval.
- global modality $E\phi$ holds if there is some interval where ϕ holds.

$$\begin{split} \mathcal{I}, G, [t, u] &\models a & \text{iff} \quad G(a) = [t, u] \\ \mathcal{I}, G, [t, u] &\models a : \phi & \text{iff} \quad \mathcal{I}, G, G(a) \models \phi \\ \mathcal{I}, G, [t, u] &\models E\phi & \text{iff} \quad \text{for some interval } [v, w] \colon \mathcal{I}, G, [v, w] \models \phi \\ \mathcal{I}, G, [t, u] &\models \downarrow a. \phi & \text{iff} \quad \mathcal{I}, G[a := [t, u]], [t, u] \models \phi \end{split}$$

Expressibility: Neighbourhood RDC

Propositional neighbourhood logic:

ZhouHansen98,BaruaRoyZhou00

Expressibility: Neighbourhood RDC

Propositional neighbourhood logic:

ZhouHansen98,BaruaRoyZhou00

 $\begin{array}{lll} \mathcal{I}, [t, u] \models \Diamond_l \phi & \text{iff} & \mathcal{I}, [s, t] \models \phi \text{ for some } s \leq t \\ \mathcal{I}, [t, u] \models \Diamond_r \phi & \text{iff} & \mathcal{I}, [u, v] \models \phi \text{ for some } v \geq u \end{array}$

can be embedded in Hybrid DC:

$$\begin{array}{rcl} \tau(\Diamond_l \phi) &=& \downarrow a.E(\phi \frown a) \\ \tau(\Diamond_r \phi) &=& \downarrow a.E(a \frown \phi) \end{array}$$

Expressibility: Allen's binary relations

All 13 (Allen) relations between two intervals are expressible. E.g.

a precedes b	a meets b	a overlaps b	a finished by b	a contains b	a starts b
\bigcap_{b}^{a}					

$a \ \mathbf{precedes} \ b$	$a: \diamondsuit_r(\neg \pi \land \diamondsuit_r b)$
a meets b	$a:\diamondsuit_r b$
a overlaps b	$E(\downarrow c. \neg \pi \land a : (\neg \pi \frown c) \land b : (c \frown \neg \pi))$
a finished by b	$a:(eg \pi \frown b)$
a contains b	$a:(\neg\pi^{\frown}b^{\frown}\neg\pi)$
a starts b	$b:(a \frown \neg \pi)$

Monadic second-order theory of order $L_2^<$

We reduce satisfiability of Hybrid Duration Calculus to satisfiability of L_2^{\leq} . (Discrete as well as continuous time.)

Monadic second-order theory of order $L_2^<$

We reduce satisfiability of Hybrid Duration Calculus to satisfiability of $L_2^{<}$. (Discrete as well as continuous time.)

The formulas of $L_2^{<}$ are constructed from:

- First-order variables ranged over by x, y, z, \ldots
- Second-order variables ranged over by P, Q, X, \ldots

Monadic second-order theory of order $L_2^<$

We reduce satisfiability of Hybrid Duration Calculus to satisfiability of L_2^{\leq} . (Discrete as well as continuous time.)

The formulas of $L_2^{<}$ are constructed from:

- First-order variables ranged over by x, y, z, \ldots
- Second-order variables ranged over by P, Q, X, \ldots

The formulas are generated from the following grammar:

 $\phi ::= x < y \mid x \in P \mid \phi \lor \psi \mid \neg \phi \mid \exists x \phi \mid \exists P \phi .$

Semantics of $L_2^<$

A structure (A, B, <) consists of a set A partially ordered by < and a set B of Boolean-valued functions from A. An element $b \in B$ can be considered a, possibly infinite, subset of A.

- An *interpretation* \mathcal{I} associates a member $P_{\mathcal{I}}$ of B to every second-order variable P.
- A valuation ν is a function assigning a member $\nu(x)$ of A to every first-order variable x.

The semantic relation $\mathcal{I}, \nu \models \phi$ is then defined by:

Decidability results for $L_2^{<}$

- Let $\omega = (\mathbb{N}, 2^{\mathbb{N}}, <).$
 - $L_2^<(\omega)$ is decidable

Büchi

From Hybrid DC to $L_2^<(\omega)$ — discrete time

- each state variable P corresponds to a second-order variable denoted by P. Idea: $i \in P$ iff P(t) = 1 in the interval [i, i + 1[.
- each nominal a is associated with two variables x_a and y_a .

From Hybrid DC to $L_2^<(\omega)$ — discrete time

- each state variable P corresponds to a second-order variable denoted by P. Idea: $i \in P$ iff P(t) = 1 in the interval [i, i + 1[.
- each nominal a is associated with two variables x_a and y_a .

Correctness of translation

Discrete time:

• ϕ is satisfiable in discrete-time Hybrid DC iff $\mathcal{T}_{x,y}(\phi) \wedge x \leq y \wedge \bigwedge_{a \text{ in } \phi} x_a \leq y_a$ is satisfiable in $L_2^{<}(\omega)$.

The decision problem is non-elementary

Current focus

Model checking and deciding an interval logic with durations, aiming at verification of durational properties like:

- Per day, the telephone network is down for at most 15 seconds $\int Down \le 15$
- Total delay of message delivery across the network is less than 235ms $\Sigma_i \int delay(m_i) \leq 235$
- The lifetime of a system with two processors is at least k:

$$\begin{pmatrix} c_1 \int (A_1 \wedge A_2) \\ + c_2 \int (A_1 \wedge \neg A_2) \\ + c_3 \int (\neg A_1 \wedge A_2) \\ + c_4 \int (\neg A_1 \wedge \neg A_2) \end{pmatrix} \ge e \Rightarrow \ell \ge k$$

Involves theory, applications and implementation