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Informal introduction to Duration Calculus

A logic for declarative modelling of real-time properties

Background
A simple case study: Gas Burner

A decidability result
pointers to current focus
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Gas Burner example: Requirements

State variables modelling Gas and Flame:
G,F: Time — {0,1}

State expression modelling that gas Iis Leaking
L=GA-F
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Gas Burner example: Requirements

State variables modelling Gas and Flame:
G,F: Time — {0,1}

State expression modelling that gas Iis Leaking
L=GA-F

Requirement

Gas must at most be leaking 1/20 of the elapsed time
(e —b) >60s = 20/, L(t)dt < (e —b)
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Gas Burner example: Design decisions

Leaks are detectable and stoppable within 1s:
Ve,d:b<c<d<e.(lLlc,d = (d—c)<1s)
where
= ["P(t) ) >0

which reads “P holds throughout e, d]”
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Gas Burner example: Design decisions

Leaks are detectable and stoppable within 1s:
Ve,d:b<c<d<e.(lLlc,d = (d—c)<1s)
where
= ["P(t) ) >0
which reads “P holds throughout c, d]”

At least 30s between leaks:

Ve,d,r,s:b<c<r<s<d<e.
(Lle,r] A =Llr,s| ALls,d]) = (s—1)>30s
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: 0 = z|v|6,+0,]| ... Temporal Variable
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: 0 = z|v|6,+0,]| ... Temporal Variable
v:lIntv - R
Formulas: ¢ = 6, =0, |-¢| oV |od™0 | (Tx)p]| ... chop

¢ : Intv — {tt,ff}
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: 0 = z|v|6,+0,]| ... Temporal Variable
v:lIntv - R
Formulas: ¢ = 6, =0, |-¢| oV |od™0 | (Tx)p]| ... chop

¢ : Intv — {tt,ff}

Chop:
b
] ¢
I PN J forsomem:b<m<e

-9
SR
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: 0 = z|v|6,+0,]| ... Temporal Variable
v:lIntv - R
Formulas: ¢ = 6, =0, |-¢| oV |od™0 | (Tx)p]| ... chop

¢ : Intv — {tt,ff}

Chop:
6y
b :
g _ N g ? forsomem:b<m<e
¢ 0

In DC: Intv={ |a,b] | a,b € RAa < b}
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Duration Calculus [Zhou Hoare Ravn 91]

State variables P : Time — {0,1} Finite Variability

State expressions S = 0|1|P|-S| SV .S,
S : Time — {0, 1} pointwise defined
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Duration Calculus [Zhou Hoare Ravn 91]

* State variables P : Time — {0,1} Finite Variability

e State expressions S = 0|1|P|-S| SV .S,
S : Time — {0, 1} pointwise defined

* Durations [S : Intv — R defined on [b, ] by

/b " S(t)dt

— Temporal variables with a structure
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Example: Gas Burner

Requirement
(>60 = 20[L </
Design decisions
Dy = O(|L] = £<L1)
Dy = O(TL]~T-L]~TL]) = ¢ > 30)
where ¢ denotes the length of the interval, and
Op  =true "¢ "true “for some sub-interval: ¢”
o =00 “for all sub-intervals: ¢”
[P]] =[/P=¢ A ¢>0 “P holds throughout
a non-point interval”
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Example: Gas Burner

Requirement
(>60 = 20[L </
Design decisions
Dy = O(|L] = £<L1)
Dy = O(TL]~T-L]~TL]) = ¢ > 30)
where ¢ denotes the length of the interval, and
O =true T ¢ true “for some sub-interval: ¢”
(o =00 “for all sub-intervals: ¢”
[P]] =[/P=¢ A ¢>0 “P holds throughout
a non-point interval”

succinct formulation — no interval endpoints
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Decidabllity
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Decidabllity

What can’t the computer do for me ?
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Overview [Zhou Hansen Sestoft 93]

[5]
0, OVY, o7 Y

Satisfiability Is reduced to emptiness of regular languages

Restricted Duration Calculus :

Hence decidable for both discrete and continuous time
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Overview [Zhou Hansen Sestoft 93]

[5]
0, OVY, o7 Y

Satisfiability Is reduced to emptiness of regular languages

Restricted Duration Calculus :

Hence decidable for both discrete and continuous time

Even small extensions give undecidable subsets

RDC; (Cont. time) RDC) RDCj5
(=1, [S] JS1 =[S el ~
_ . 2P, QN Y, Y
G, OV Y, 0T Y P, VY, ¢ Y
(Fz)¢
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Overview [Zhou Hansen Sestoft 93]

[5]
0, OVY, o7 Y

Satisfiability Is reduced to emptiness of regular languages

Restricted Duration Calculus :

Hence decidable for both discrete and continuous time

Even small extensions give undecidable subsets

RDC; (Cont. time) RDC) RDCj5
{=ux, ||S
o o= ) ~ ZJJM
—¢, BV, ¢ "1 —¢, OV, ¢ P | |
(3r)o

How would you show such results?
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Decidability of RDC for Discrete Time

Satisfiablility is reduced to emptiness of regular languages
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Decidability of RDC for Discrete Time

Satisfiablility is reduced to emptiness of regular languages

ldea: a € . describes a piece of an interpretation, e.qg. P, A =P, A P
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Decidability of RDC for Discrete Time

Satisfiablility is reduced to emptiness of regular languages
ldea: a € . describes a piece of an interpretation, e.qg. P, A =P, A P

Discrete time — one letter corresponds to one time unit
L([ST) = (DNF(S))"
LeVy) = Lip)ULW)
() = X\ L(p)
(e7v) = Lip) L)

o O
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Decidability of RDC for Discrete Time

Satisfiablility is reduced to emptiness of regular languages
ldea: a € . describes a piece of an interpretation, e.qg. P, A =P, A P

Discrete time — one letter corresponds to one time unit

LTST) = (DNF(S))T
LpVy) = Llp)ULWY)
L(~p) = T \L(p)
Lp7Y) = Llp) L(Y)

L(¢) is regular
¢ is satisfiable iff L(¢) #£ ()
Satisfiability problem for RDC is decidable non-elementary
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Example

Is the formula ([|P| ~[P]) = || P] valid for discrete time?
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Example

Is the formula ([|P| ~[P]) = || P] valid for discrete time?

Y= Ul
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Example

Is the formula ([|P| ~[P]) = || P] valid for discrete time?

X={{P}{}}
We have
(1P ~IP]) = [|P] is valid

iff =(([P] ~[P])= [[P]) is not satisfiable
iff ([P] [ P]) A= P] is not satisfiable

it Lo([P] PN L= P) = 5

iff {({Py[i=2pn(E\{{P}'[i=1})={}

The last equality holds.
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Example

Is the formula ([|P| ~[P]) = || P] valid for discrete time?

Y= Ul

We have
(1P ~IP]) = [|P] is valid
iff =(([P] ~[P])= [[P]) is not satisfiable
iff ([P ~[P]) A= P] is not satisfiable
it Lo([P] 1P NL(=[P]) =15
iff {{P}[iz2tn(E\{P}' [i=1}) ={}

The last equality holds.

Therefore, the formula is valid for discrete time.
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Hybrid Duration Calculus

Bolander Hansen Hansen 06-07

Improved expressivity at the same price
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Hybrid DC

Hybrid DC is Restricted Duration Calculus extended by:

Nominals a — names a specific interval
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Hybrid DC

Hybrid DC is Restricted Duration Calculus extended by:

Nominals a — names a specific interval G(a) = |tq, ug]

Satisfaction operator a : ¢ — ¢ holds at a

downarrow binder |a.¢ holds if ¢ holds under the assumption
that ¢« names the current interval.

global modality E¢ holds if there is some interval where ¢ holds.

7,G,|
7,G,|
7,G,|
7,G,|

| = a iff G(a)=|t,ul

—q:¢ iff 7,G,G(a)E ¢
— F¢  iff for some interval [v, w]:
:lCL¢ Iff I,G[CL T [t,UH [ ] ‘

1,G, [v,w| = ¢
¢
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Expressibility: Neighbourhood RDC

Propositional neighbourhood logic:
ZhouHansen98,BaruaRoyZhou00

T, [t,ul = Q0 it I, |s,t] = ¢ for some s <t
T, t,ul =00 iff  Z,|u,v] = ¢ forsome v > u

Or @ ¢
¢ S N i N for some v > u
t U v
¢ Yo,
= 7 X 7 Ny forsome s <t
S { U
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Expressibility: Neighbourhood RDC

Propositional neighbourhood logic:
ZhouHansen98,BaruaRoyZhou00

LF% O it I |s,t] = ¢ forsome s <t

Z,t,ul = Orp iff I, |u,v| = ¢ forsomev > u
Or @ ¢
¢ ~ ¢ S N for some v > u
t U v
@ Q1o
= -\ X ~\ N for some s < ¢
S t U

can be embedded in Hybrid DC:
T(019) ia.ng ag
7(0:¢) = la.E(a" ¢
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Expressibility: Allen’s binary relations

All 13 (Allen) relations between two intervals are expressible. E.qg.

a precedes b ameets b | aoverlapsb | afinished by b | a contains b a starts b
a a a QL g a
— — — f i | f ===
— — — — — I i
~—— ~—— —— ~—— ~—— —
b b b b b b
a precedes b a: Qr(—m A Orb)
a meets b a: Qb
aoverlapsb | E(lec—mAa: (=7 " c)Ab: (c™ —7))
a finished by b a: (—m " b)
a contains b a:(—m b7 )
a starts b b:(a™ —m)
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Monadic second-order theory of order L3

We reduce satisfiability of Hybrid Duration Calculus to satisfiability of
L5 . (Discrete as well as continuous time.)
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Monadic second-order theory of order L3

We reduce satisfiability of Hybrid Duration Calculus to satisfiability of
L5 . (Discrete as well as continuous time.)

The formulas of L5 are constructed from:
First-order variables ranged over by =, vy, 2, . . ..
Second-order variables ranged over by P, (), X, .. ..
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Monadic second-order theory of order L3

We reduce satisfiability of Hybrid Duration Calculus to satisfiability of
L5 . (Discrete as well as continuous time.)

The formulas of L5 are constructed from:
First-order variables ranged over by =, vy, 2, . . ..
Second-order variables ranged over by P, (), X, .. ..

The formulas are generated from the following grammar:
pr=x<ylreP|loVY|—-¢|dxp|IP¢.
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Semantics of L3

A structure (A, B, <) consists of a set A partially ordered by < and a
set B of Boolean-valued functions from A. An element b € B can be
considered a, possibly infinite, subset of A.

An interpretation 7 associates a member Pr of B to every
second-order variable P.

A valuation v is a function assigning a member v(x) of A to
every first-order variable z.

The semantic relation Z, v = ¢ is then defined by:

B

gb Iff
oV Iff gb orZ,v =
Jxg  Iff or some ac AL
JP¢ Iff forsomebe B: 71

N X XX X KX

~»

NNNNNN

Y
o imdl ¢
P= ¢
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Decidability results for L3

Let w = (N, 2%, <).

L5 (w) is decidable Buchi
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From Hybrid DC to L35 (w) — discrete time

each state variable P corresponds to a second-order variable
denoted by P. Idea: i € P iff P(f) = 1 inthe interval |i,7 + 1|.

each nominal a Is associated with two variables z, and y,,.
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From Hybrid DC to L35 (w) — discrete time

each state variable P corresponds to a second-order variable
denoted by P. Idea: i € P iff P(f) = 1 inthe interval |i,7 + 1|.

each nominal a Is associated with two variables z, and y,,.
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Correctness of translation

Discrete time:

¢ Is satisfiable in discrete-time Hybrid DC
iff 7., (0) ANz <y A Nyin g ®a < Yo IS satisfiable in L3 (w).

The decision problem is non-elementary
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Current focus

Model checking and deciding an interval logic with durations, aiming
at verification of durational properties like:

Per day, the telephone network is down for at most 15 seconds

fDown < 15

Total delay of message delivery across the network is less than

235ms

i [delay(m;) < 235

The lifetime of a system with two processors is at least &:

[

_|_
_|_

\ + o

1 J(A1 A A) \
co [(A1 N —Ay)
c3 [(mA1 A As)

(mAL A —A) )

>e=(>k

Involves theory, applications and implementation
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