Correctness of Functional Programs
A simple setting

Michael R. Hansen
nm h@ mm dt u. dk

Informatics and Mathematical Modelling

Technical University of Denmark

02153 Declarative Modelling (¢)Michael R. Hansen, Fall 2007 — p. 1/18

Overview

Today:

Verification of functional programs

Simple setting
terminating programs
set-theoretic interpretation of types
Inductively defined datatypes
structural induction
well-founded induction

which covers a wide range of interesting programs

Next week
Test exam

02153 Declarative Modelling (¢)Michael R. Hansen, Fall 2007 — p. 2/18

Example: the ner ge function

Merge two ordered lists:
fun merge(xs,[]) XS
| merge([],ys) =ys
| merge(x::Xxs,y::ys) =
case Int.conpare(x,y) of
EQUAL => x::y::nerge(Xxs,ys)
| LESS => Xx::nerge(xs,y::ys)
| GREATER => y::nerge(X::Xs,ys)
Correctness: what does it involve?

02153 Declarative Modelling (©)Michael R. Hansen, Fall 2007 — p. 3/18

Example: the ner ge function

Merge two ordered lists:
fun merge(xs,[]) XS
| merge([],ys) =ys
| merge(x::Xxs,y::ys) =
case Int.conpare(x,y) of
EQUAL => x::y::nerge(Xxs,ys)
| LESS => x::nerge(xs,y::ys)
| GREATER => y::nerge(X::Xs,ys)
Correctness: what does it involve?

termination proof

Vxs,ys : alist.

ordered(xs)/Aordered(ys) = ordered(merge(xs,ys)) (M)

IS more needed?

02153 Declarative Modelling (©)Michael R. Hansen, Fall 2007 — p. 3/18

Reasoning about program expressions

Are the following meaningful?

From e; = e; + e, we conclude e, =0

€3 + e3 = 263
Not necessarily in the presence of non-termination and side effects:

Given fun f(x) = f(x) + 1.
Let e3 be given by (X:= Ix+1; Ix +3)

In domain theory special partially ordered sets are introduced to
deal with non-termination. Dana Scott late 1960s

In Hoare Logic one can reason about imperative programs
Floyd, Hoare late 1960s

02153 Declarative Modelling (¢)Michael R. Hansen, Fall 2007 — p. 4/18

Simple setting

terminating programs
applicative (pure functional) programs
set-theoretical interpretation of types

Supports valid arguments based on

simple equational reasoning
Inductive reasoning

02153 Declarative Modelling (©)Michael R. Hansen, Fall 2007 — p. 5/18

Simple setting

terminating programs
applicative (pure functional) programs
set-theoretical interpretation of types

Supports valid arguments based on

simple equational reasoning
Inductive reasoning

Certain datatypes are excluded, e.qg.
datatype A = Cof A-> A
as no set A is isomorphicto A — A.

Can be dealt with in domain theory

02153 Declarative Modelling (©)Michael R. Hansen, Fall 2007 — p. 5/18

Example: iterative factorial function

We prove Vn € NVp € N.facti(n,p) =n! - p, where

P (» Case 1 *)
facti(n-1,nxp) (* Case 2 *)

fun facti (0, p)
| facti(n,p)

using the following well-known induction rule for natural numbers

1. P(0) base case
2. Vn.(P(n) = P(n+1)) inductive step
vn.P(n)

02153 Declarative Modelling (©)Michael R. Hansen, Fall 2007 — p. 6/18

Example: iterative factorial function

We prove Vn € NVp € N.facti(n,p) =n! - p, where

P (» Case 1 *)
facti(n-1,nxp) (* Case 2 *)

fun facti (0, p)
| facti(n,p)

using the following well-known induction rule for natural numbers

1. P(0) base case
2. Vn.(P(n) = P(n+1)) inductive step

vn.P(n) What is P(n)?

02153 Declarative Modelling (©)Michael R. Hansen, Fall 2007 — p. 6/18

Example: iterative factorial function

We prove Vn € NVp € N.facti(n,p) =n! - p, where

P (» Case 1 *)
facti(n-1,nxp) (* Case 2 *)

fun facti (0, p)
| facti(n,p)

using the following well-known induction rule for natural numbers

1. P(0) base case
2. Vn.(P(n) = P(n+1)) inductive step
vn.P(n) What is P(n)?

Base case. We must prove Vp € N.facti(0,p) = 0! - p. Trivial.

02153 Declarative Modelling (©)Michael R. Hansen, Fall 2007 — p. 6/18

Example: iterative factorial function

We prove Vn € NVp € N.facti(n,p) =n! - p, where

fun facti (0, p)
| facti(n,p)

P

facti (n-1, nxp)

(» Case 1 *)
(» Case 2 *)

using the following well-known induction rule for natural numbers

1.

P(0)

2. Yn.(Pn)=Pn+1))

base case
Inductive step

vn.P(n)

What is P(n)?

Base case. We must prove Vp € N.facti(0,p) = 0! - p. Trivial.

Inductive step. Consider arbitrary n € N. We must establish

Vp € N.facti(n,p) =n!-p = Vp € NAfactim+1,p)=n+1)-p

.

TV
induction hypothesis

7

-~

P(n)

4

-~

P(n+1)

02153 Declarative Modelling (©)Michael R. Hansen, Fall 2007 — p. 6/18

Example cont’d

Assume the induction hypothesis:

vp' € N.facti(n,p’) =n!.p’ (Ind.hyp.)

Consider arbitrary p € N.

factiin + 1, p)
= factiim,(n+1)-p) CaseZ,asn+1+#0
= nl-Mm+1)p Ind.hyp.,p'— (n+1)-p
= m+1!-p

which establishes the inductive step.

Hence Vn € NVp € N.facti(n,p) =n! - p, by the induction rule.

02153 Declarative Modelling (¢)Michael R. Hansen, Fall 2007 — p. 7/18

Structural induction over lists

The declaration
datatype "a list = Nl | :: of "a = "a |lIst
denotes an inductive definition of lists (of type 'a)

[] is a list

If x iIs an element and xs is a list, then x :: xs Is a list
lists can be generated by above rules only

The following structural induction rule is therefore sound:
1. P(ll) base case
2. Vxs.Vx(P(xs) = P(x :xs)) inductive step
Vxs.P(xs)

02153 Declarative Modelling (©)Michael R. H

ansen, Fall 2007 — p. 8/18

Example

fun [] @ys = ys | (X::XS) @YS = X::(Xs @VYsS);
fun len [] =0 | len (_::xs) = 1+l en xs;

We prove: Vxs.len(xs@ys) = len(xs) + len(ys)

Base case: len([J@ys) = len(ys) = 0 + len(ys) = len([]) + len(ys)
Inductive step:

len((x : xs)@ys)
len(x :: (xs@ys)) def.append
— 14 len(xs@ys) def.len
— 1+ (len(xs) + len(ys)) ind.hyp.
— (1 +len(xs)) + len(ys) arith.
— len(x:xs)+ len(ys) def.len

02153 Declarative Modelling (©)Michael R. Hansen, Fall 2007 — p. 9/18

Exercises

Prove
rev(xs @ys) = rev(ys) @rev(xs)
where
fun rev [] =[] (» Case 1 x)
| rev (x::xs) =rev xs @[x] (» Case 2 *)

02153 Declarative Modelling (€)Michael R. Hansen, Fall 2007 — p. 10/18

Exercises

Prove

rev(xs @ys) =
where

fun rev []
| rev (Xx::Xxs)

Did you (need to) prove
xs @[] = xs
Xs @(ys @zs)

rev(ys) @rev(xs)

[] (» Case 1 =)
rev xs @ | x] (» Case 2 *)

= (Xs @ys) @zs ?

02153 Declarative Modelling (€)Michael R. Hansen, Fall 2007 — p. 10/18

Exercises

Prove
rev(xs @ys) = rev(ys) @rev(xs)
where
fun rev [] =[] (» Case 1 x)
| rev (x::xs) =rev xs @[x] (» Case 2 *)

Did you (need to) prove
xs @[] = xs
XS @(ys @zs) = (Xs @ys) @zs ?

Can you prove correctness of merge using previous ind. rule?

02153 Declarative Modelling (¢)Michael R. Hansen, Fall 2007 — p. 10/18

Well-founded relation

Let R be a binary relationon A, i.e. R C A x A.
An element m € X C A Is minimal in X if for no element x € X: xRm.

A binary relation R C A x A is well-founded if
every non-empty subset X C A has a minimal element.

Equivalent formulation:

A contains no countable infinite descending chains: i.e there is
no infinite sequence xy, x1, X2, . . . of elements of A such that

Xi+1RX4.

02153 Declarative Modelling (€)Michael R. Hansen, Fall 2007 — p. 11/18

Well-founded induction

Given irreflexive, well-founded R on X.

Principle of well-founded induction:

premise

~

914 c X.((Vx € X.xﬁ; = P(x)) = P(y))

Yy € X.P(y)

02153 Declarative Modelling (€)Michael R. Hansen, Fall 2007 — p. 12/18

Well-founded induction

Given irreflexive, well-founded R on X.

Principle of well-founded induction:

premise

Qy c X.((Vx € X.xﬁ; = P(x)) = P(y)y
Yy € X.P(y)

Principle is sound because:

Suppose premise is true and E = {e € X | =P(e)} # 0.

We derive a contradiction as follows:

E has a minimal element m € E since R is well-founded and
—P(m)

xRm implies x € E, i.e. P(x) holds, since m is minimal in E

P(m) by the premise as Vx € X.xRm = P(x)

02153 Declarative Modelling (¢)Michael R. Hansen, Fall 2007 — p. 12/18

Examples

The previous induction principles are specializations:

Natural numbers, with a <, b iff b = a + 1.
Lists, with xs < ys iff xs = tail(ys).

A few other examples:
List, with prefix ordering <
List, with lexicographical ordering <
Trees, with sub-tree ordering
N x Nwith (n,p) <’ (n/,p/) iffn+1=n'

List x List with (xs,ys) <” (xs’,ys’) iff
length(xs) + length(ys) < length(xs’) 4+ length(ys’)

02153 Declarative Modelling (©)Michael R. H

ansen, Fall 2007 — p. 13/18

Exercise

Redo proof for facti using well-founded induction using the
relation (n,p) </’ (n',p’)iff n+1=n"on N x N.

Notice that ind. hyp. can be simplified.

Consider a proof for merge (property M) using well-founded
induction on the basis of: List x List with (xs,ys) <” (xs’,ys’)
Iff length(xs) + length(ys) < length(xs’) + length(ys’)

Formulate the main proof steps. (You do not need to complete
them.)

02153 Declarative Modelling (¢©)Michael R. Hansen, Fall 2007 — p. 14/18

Structural iInduction on Trees

Inductive definition of binary trees:
datatype 'a tree = Lf | Br of "a "a tree » "a tre

and an associated induction rule:

1. P(Lf) base case
2. Vti,t2.Yn.(P(t7) AP(ty) = P(Br(n,tl,t2)) inductive step
Vt.P(t)

02153 Declarative Modelling (¢)Michael R. Hansen, Fall 2007 — p. 15/18

Example

0
1 + count t1 + count t2;

fun count Lf
| count(Br(_,t1,t2))

fun depth Lf =0
| depth(Br(n,tl1,t2)) =
1+ Int. nax(depth tl, depth t2)

Property: for every binary tree t:

count(t) < 29epthit) _ 1

02153 Declarative Modelling (€)Michael R. Hansen, Fall 2007 — p. 16/18

Example cont’d: proof

by structural induction over trees

Base case:
count(Lf) = 0 = 24epth(lL) _ 1

Inductive step:

count(Br(n, t1, t;))
1 + count(ty) + count(t,) def. count

1 4 (2depthiti) _ 1) 4 (2depth(tz) _ 1) ind.hyp.
ymax(depth(t;),depth(t;)) + pmax(depth(ty),depth(tz)) _ 1 grith.

IA A

21+max(depth(t1),depth(ty) 1 arith.
DEEPERERIE)) | def. depth

02153 Declarative Modelling (¢)Michael R. Hansen, Fall 2007 — p. 17/18

Exercise

fun postorder Lf []
| postorder(Br(n,tl,t2))
postorder t1 @postorder t2 @[n];

fun preorder Lf
| preorder(Br(n,t1,t2))
n ::. preorder t1 @preorder t2;

[]

fun refl ect Lf = Lf
| reflect(Br(n,t1,t2)) =
Br(n, reflect t2 reflect t1);

Prove: for every binary tree t.:

postorder(reflect(t)) = rev(preorder(t))

02153 Declarative Modelling (€)Michael R. Hansen, Fall 2007 — p. 18/18

	Overview
	Example: the 	exttt {large merge} function
	Example: the 	exttt {large merge} function

	Reasoning about program expressions
	Simple setting
	Simple setting

	Example: iterative factorial function
	Example: iterative factorial function
	Example: iterative factorial function
	Example: iterative factorial function

	Example cont'd
	Structural induction over lists
	Example
	Exercises
	Exercises
	Exercises

	Well-founded relation
	Well-founded induction
	Well-founded induction

	Examples
	Exercise
	Structural induction on Trees
	Example
	Example cont'd: proof
	Exercise

