
Correctness of Functional Programs
A simple setting

Michael R. Hansen
mrh@imm.dtu.dk

Informatics and Mathematical Modelling

Technical University of Denmark

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 1/18



Overview

Today:

• Verification of functional programs
Simple setting
• terminating programs
• set-theoretic interpretation of types
• inductively defined datatypes
• structural induction
• well-founded induction

which covers a wide range of interesting programs

Next week

• Test exam

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 2/18



Example: the merge function

Merge two ordered lists:
fun merge(xs,[]) = xs

| merge([],ys) = ys
| merge(x::xs,y::ys) =
case Int.compare(x,y) of

EQUAL => x::y::merge(xs,ys)
| LESS => x::merge(xs,y::ys)
| GREATER => y::merge(x::xs,ys)

Correctness: what does it involve?

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/18



Example: the merge function

Merge two ordered lists:
fun merge(xs,[]) = xs

| merge([],ys) = ys
| merge(x::xs,y::ys) =
case Int.compare(x,y) of

EQUAL => x::y::merge(xs,ys)
| LESS => x::merge(xs,y::ys)
| GREATER => y::merge(x::xs,ys)

Correctness: what does it involve?

• termination proof

• ∀xs, ys : αlist.

ordered(xs)∧ordered(ys) ⇒ ordered(merge(xs, ys)) (M)

• is more needed?
02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 3/18



Reasoning about program expressions

Are the following meaningful?

• From e1 = e1 + e2 we conclude e2 = 0

• e3 + e3 = 2e3

Not necessarily in the presence of non-termination and side effects:

• Given fun f(x) = f(x) + 1.

• Let e3 be given by (x:= !x+1; !x +3)

In domain theory special partially ordered sets are introduced to
deal with non-termination. Dana Scott late 1960s

In Hoare Logic one can reason about imperative programs
Floyd, Hoare late 1960s

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 4/18



Simple setting

• terminating programs

• applicative (pure functional) programs

• set-theoretical interpretation of types

Supports valid arguments based on

• simple equational reasoning

• inductive reasoning

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 5/18



Simple setting

• terminating programs

• applicative (pure functional) programs

• set-theoretical interpretation of types

Supports valid arguments based on

• simple equational reasoning

• inductive reasoning

Certain datatypes are excluded, e.g.
datatype A = C of A -> A

as no set A is isomorphic to A → A.

Can be dealt with in domain theory

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 5/18



Example: iterative factorial function

We prove ∀n ∈ N∀p ∈ N.facti(n, p) = n! · p, where

fun facti(0,p) = p (* Case 1 *)
| facti(n,p) = facti(n-1,n*p) (* Case 2 *)

using the following well-known induction rule for natural numbers

1. P(0) base case

2. ∀n.(P(n) ⇒ P(n + 1)) inductive step

∀n.P(n)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/18



Example: iterative factorial function

We prove ∀n ∈ N∀p ∈ N.facti(n, p) = n! · p, where

fun facti(0,p) = p (* Case 1 *)
| facti(n,p) = facti(n-1,n*p) (* Case 2 *)

using the following well-known induction rule for natural numbers

1. P(0) base case

2. ∀n.(P(n) ⇒ P(n + 1)) inductive step

∀n.P(n) What is P(n)?

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/18



Example: iterative factorial function

We prove ∀n ∈ N∀p ∈ N.facti(n, p) = n! · p, where

fun facti(0,p) = p (* Case 1 *)
| facti(n,p) = facti(n-1,n*p) (* Case 2 *)

using the following well-known induction rule for natural numbers

1. P(0) base case

2. ∀n.(P(n) ⇒ P(n + 1)) inductive step

∀n.P(n) What is P(n)?

Base case. We must prove ∀p ∈ N.facti(0, p) = 0! · p. Trivial.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/18



Example: iterative factorial function

We prove ∀n ∈ N∀p ∈ N.facti(n, p) = n! · p, where

fun facti(0,p) = p (* Case 1 *)
| facti(n,p) = facti(n-1,n*p) (* Case 2 *)

using the following well-known induction rule for natural numbers

1. P(0) base case

2. ∀n.(P(n) ⇒ P(n + 1)) inductive step

∀n.P(n) What is P(n)?

Base case. We must prove ∀p ∈ N.facti(0, p) = 0! · p. Trivial.

Inductive step. Consider arbitrary n ∈ N. We must establish

∀p ∈ N.facti(n, p) = n! · p
︸ ︷︷ ︸

induction hypothesis
︸ ︷︷ ︸

P(n)

⇒ ∀p ∈ N.facti(n + 1, p) = (n + 1)! · p
︸ ︷︷ ︸

P(n+1)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 6/18



Example cont’d

Assume the induction hypothesis:

∀p ′ ∈ N.facti(n, p ′) = n! · p ′ (Ind.hyp.)

Consider arbitrary p ∈ N.

facti(n + 1, p)

= facti(n, (n + 1) · p) Case 2, as n + 1 6= 0

= n! · (n + 1) · p Ind.hyp., p ′ 7→ (n + 1) · p

= (n + 1)! · p

which establishes the inductive step.

Hence ∀n ∈ N∀p ∈ N.facti(n, p) = n! · p, by the induction rule.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 7/18



Structural induction over lists

The declaration
datatype ’a list = Nil | :: of ’a * ’a list

denotes an inductive definition of lists (of type ’a)

• [] is a list

• if x is an element and xs is a list, then x :: xs is a list

• lists can be generated by above rules only

The following structural induction rule is therefore sound:
1. P([]) base case

2. ∀xs.∀x(P(xs) ⇒ P(x :: xs)) inductive step

∀xs.P(xs)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 8/18



Example

fun [] @ ys = ys | (x::xs) @ ys = x::(xs @ ys);
fun len [] = 0 | len (_::xs) = 1+len xs;

We prove: ∀xs.len(xs@ys) = len(xs) + len(ys)

Base case: len([]@ys) = len(ys) = 0 + len(ys) = len([]) + len(ys)

Inductive step:

len((x :: xs)@ys)

= len(x :: (xs@ys)) def.append

= 1 + len(xs@ys) def.len

= 1 + (len(xs) + len(ys)) ind.hyp.

= (1 + len(xs)) + len(ys) arith.

= len(x :: xs) + len(ys) def.len

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 9/18



Exercises

Prove

• rev(xs @ ys) = rev(ys) @ rev(xs)

where
fun rev [] = [] (* Case 1 *)
| rev (x::xs) = rev xs @ [x] (* Case 2 *)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 10/18



Exercises

Prove

• rev(xs @ ys) = rev(ys) @ rev(xs)

where
fun rev [] = [] (* Case 1 *)
| rev (x::xs) = rev xs @ [x] (* Case 2 *)

Did you (need to) prove

• xs @ [] = xs

• xs @ (ys @ zs) = (xs @ ys) @ zs ?

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 10/18



Exercises

Prove

• rev(xs @ ys) = rev(ys) @ rev(xs)

where
fun rev [] = [] (* Case 1 *)
| rev (x::xs) = rev xs @ [x] (* Case 2 *)

Did you (need to) prove

• xs @ [] = xs

• xs @ (ys @ zs) = (xs @ ys) @ zs ?

Can you prove correctness of merge using previous ind. rule?

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 10/18



Well-founded relation

Let R be a binary relation on A, i.e. R ⊆ A × A.

An element m ∈ X ⊆ A is minimal in X if for no element x ∈ X: xRm.

A binary relation R ⊆ A × A is well-founded if

• every non-empty subset X ⊆ A has a minimal element.

Equivalent formulation:

• A contains no countable infinite descending chains: i.e there is
no infinite sequence x0, x1, x2, . . . of elements of A such that
xi+1Rxi.

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 11/18



Well-founded induction

Given irreflexive, well-founded R on X.

Principle of well-founded induction:
premise

︷ ︸︸ ︷
∀y ∈ X.((∀x ∈ X.xRy ⇒ P(x)) ⇒ P(y))

∀y ∈ X.P(y)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 12/18



Well-founded induction

Given irreflexive, well-founded R on X.

Principle of well-founded induction:
premise

︷ ︸︸ ︷
∀y ∈ X.((∀x ∈ X.xRy ⇒ P(x)) ⇒ P(y))

∀y ∈ X.P(y)

Principle is sound because:

Suppose premise is true and E = {e ∈ X | ¬P(e)} 6= ∅.

We derive a contradiction as follows:

• E has a minimal element m ∈ E since R is well-founded and
¬P(m)

• xRm implies x 6∈ E, i.e. P(x) holds, since m is minimal in E

• P(m) by the premise as ∀x ∈ X.xRm ⇒ P(x)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 12/18



Examples

The previous induction principles are specializations:

• Natural numbers, with a <s b iff b = a + 1.

• Lists, with xs ≺tl ys iff xs = tail(ys).

A few other examples:

• List, with prefix ordering ≺

• List, with lexicographical ordering ≺L

• Trees, with sub-tree ordering

• N × N with (n, p) < ′ (n ′, p ′) iff n + 1 = n ′

• List × List with (xs, ys) < ′′ (xs ′, ys ′) iff
length(xs) + length(ys) < length(xs ′) + length(ys ′)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 13/18



Exercise

• Redo proof for facti using well-founded induction using the
relation (n, p) < ′ (n ′, p ′) iff n + 1 = n ′ on N × N.

Notice that ind. hyp. can be simplified.

• Consider a proof for merge (property M) using well-founded
induction on the basis of: List × List with (xs, ys) < ′′ (xs ′, ys ′)

iff length(xs) + length(ys) < length(xs ′) + length(ys ′)

Formulate the main proof steps. (You do not need to complete
them.)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 14/18



Structural induction on Trees

Inductive definition of binary trees:
datatype ’a tree = Lf | Br of ’a * ’a tree * ’a tree;

and an associated induction rule:

1. P(Lf) base case

2. ∀t1, t2.∀n.(P(t1) ∧ P(t2) ⇒ P(Br(n, t1, t2)) inductive step

∀t.P(t)

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 15/18



Example

fun count Lf = 0
| count(Br(_,t1,t2)) = 1 + count t1 + count t2;

fun depth Lf = 0
| depth(Br(n,t1,t2)) =

1+ Int.max(depth t1, depth t2)

Property: for every binary tree t:

count(t) ≤ 2depth(t) − 1

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 16/18



Example cont’d: proof

• by structural induction over trees

Base case:
count(Lf) = 0 = 2depth(Lf) − 1

Inductive step:

count(Br(n, t1, t2))

= 1 + count(t1) + count(t2) def. count

≤ 1 + (2depth(t1) − 1) + (2depth(t2) − 1) ind.hyp.

≤ 2max(depth(t1),depth(t2)) + 2max(depth(t1),depth(t2)) − 1 arith.

= 21+max(depth(t1),depth(t2) − 1 arith.

= 2depth(Br(n,t1,t2)) − 1 def. depth

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 17/18



Exercise

fun postorder Lf = []
| postorder(Br(n,t1,t2)) =

postorder t1 @ postorder t2 @ [n];

fun preorder Lf = []
| preorder(Br(n,t1,t2)) =

n :: preorder t1 @ preorder t2;

fun reflect Lf = Lf
| reflect(Br(n,t1,t2)) =

Br(n, reflect t2, reflect t1);

Prove: for every binary tree t:

postorder(reflect(t)) = rev(preorder(t))

02153 Declarative Modelling c©Michael R. Hansen, Fall 2007 – p. 18/18


	Overview
	Example: the 	exttt {large merge} function
	Example: the 	exttt {large merge} function

	Reasoning about program expressions
	Simple setting
	Simple setting

	Example: iterative factorial function
	Example: iterative factorial function
	Example: iterative factorial function
	Example: iterative factorial function

	Example cont'd
	Structural induction over lists
	Example
	Exercises
	Exercises
	Exercises

	Well-founded relation
	Well-founded induction
	Well-founded induction

	Examples
	Exercise
	Structural induction on Trees
	Example
	Example cont'd: proof
	Exercise

