Correctness of Functional Programs A simple setting

Michael R. Hansen

mrh@imm.dtu.dk

Informatics and Mathematical Modelling
Technical University of Denmark

Overview

Today:

- Verification of functional programs Simple setting
- terminating programs
- set-theoretic interpretation of types
- inductively defined datatypes
- structural induction
- well-founded induction
which covers a wide range of interesting programs

Next week

- Test exam

Example: the merge function

Merge two ordered lists:

```
fun merge(xs,[]) = xs
    | merge([],ys) = ys
    merge(x::xs,y::ys) =
    case Int.compare(x,y) of
        EQUAL => x::y::merge(xs,ys)
        LESS => x::merge(xS,y::ys)
        GREATER => y::merge(x::xs,ys)
```

Correctness: what does it involve?

Example: the merge function

Merge two ordered lists:

```
fun merge(xs,[]) = xs
    | merge([],ys) = ys
    merge(x::xs,y::ys) =
    case Int.compare(x,y) of
        EQUAL => x::y::merge(xs,ys)
        LESS => x::merge(xS,y::ys)
        GREATER => y::merge(x::xs,ys)
```

Correctness: what does it involve?

- termination proof
- $\forall x s, y s: \alpha l i s t$.

$$
\operatorname{ordered}(x s) \wedge \operatorname{ordered}(y s) \Rightarrow \operatorname{ordered}(\operatorname{merge}(x s, y s))
$$

- is more needed?

Reasoning about program expressions

Are the following meaningful?

- From $e_{1}=e_{1}+e_{2}$ we conclude $e_{2}=0$
- $e_{3}+e_{3}=2 e_{3}$

Not necessarily in the presence of non-termination and side effects:

- Given fun $f(x)=f(x)+1$.
- Let e_{3} be given by ($x:=!x+1 ;!x+3$)

In domain theory special partially ordered sets are introduced to deal with non-termination.

Dana Scott late 1960s
In Hoare Logic one can reason about imperative programs
Floyd, Hoare late 1960s

Simple setting

- terminating programs
- applicative (pure functional) programs
- set-theoretical interpretation of types

Supports valid arguments based on

- simple equational reasoning
- inductive reasoning

Simple setting

- terminating programs
- applicative (pure functional) programs
- set-theoretical interpretation of types

Supports valid arguments based on

- simple equational reasoning
- inductive reasoning

Certain datatypes are excluded, e.g.
datatype $A=C$ of $A \rightarrow A$
as no set A is isomorphic to $A \rightarrow A$.
Can be dealt with in domain theory

Example: iterative factorial function

We prove $\forall \mathrm{n} \in \mathbb{N} \forall \mathrm{p} \in \mathbb{N}$.facti $(\mathrm{n}, \mathrm{p})=\mathrm{n}!\cdot \mathrm{p}$, where

$$
\begin{array}{rlrl}
\text { fun facti }(0, p) & =p & (* \text { Case } 1 *) \\
\mid & \text { facti }(n, p) & =\text { facti }(n-1, n * p) & (* \text { Case } 2 *)
\end{array}
$$

using the following well-known induction rule for natural numbers

1. $P(0)$
2. $\quad \forall \mathrm{n} .(\mathrm{P}(\mathrm{n}) \Rightarrow \mathrm{P}(\mathrm{n}+1)) \quad$ inductive step $\forall \mathrm{n} . \mathrm{P}(\mathrm{n})$

Example: iterative factorial function

We prove $\forall \mathrm{n} \in \mathbb{N} \forall \mathrm{p} \in \mathbb{N}$.facti $(\mathrm{n}, \mathrm{p})=\mathrm{n}$! $\cdot \mathrm{p}$, where

$$
\begin{array}{rlrl}
\text { fun facti }(0, p) & =p & \text { (* Case } 1 *) \\
\mid ~ f a c t i ~ & (n, p) & =\text { facti }(n-1, n * p) & (* \text { Case } 2 *)
\end{array}
$$

using the following well-known induction rule for natural numbers

1.	$P(0)$
2.	$\forall n \cdot(P(n) \Rightarrow P(n+1))$
	$\forall n \cdot P(n)$
	inductive step

What is $P(n)$?

Example: iterative factorial function

We prove $\forall \mathrm{n} \in \mathbb{N} \forall \mathrm{p} \in \mathbb{N}$.facti $(\mathrm{n}, \mathrm{p})=\mathrm{n}!\cdot \mathrm{p}$, where

$$
\begin{array}{rlrl}
\text { fun facti }(0, p) & =p & (* \text { Case } 1 *) \\
\mid & \text { facti }(n, p) & =\text { facti }(n-1, n * p) & (* \text { Case } 2 \text { *) }
\end{array}
$$

using the following well-known induction rule for natural numbers

1. $P(0)$ base case
2. $\quad \forall \mathrm{n} .(\mathrm{P}(\mathrm{n}) \Rightarrow \mathrm{P}(\mathrm{n}+1)) \quad$ inductive step
$\forall \mathrm{n} . \mathrm{P}(\mathrm{n})$
Base case. We must prove $\forall p \in \mathbb{N} . f \operatorname{acti}(0, p)=0!\cdot p$. Trivial.

Example: iterative factorial function

We prove $\forall \mathrm{n} \in \mathbb{N} \forall \mathrm{p} \in \mathbb{N}$.facti $(\mathrm{n}, \mathrm{p})=\mathrm{n}!\cdot \mathrm{p}$, where

$$
\begin{array}{rlrl}
\text { fun facti }(0, p) & =p & (* \text { Case } 1 *) \\
\mid & \text { facti }(n, p) & =\text { facti }(n-1, n * p) & (* \text { Case } 2 *)
\end{array}
$$

using the following well-known induction rule for natural numbers

1. $P(0)$
2. $\quad \forall \mathrm{n} .(\mathrm{P}(\mathrm{n}) \Rightarrow \mathrm{P}(\mathrm{n}+1)) \quad$ inductive step $\forall \mathrm{n} . \mathrm{P}(\mathrm{n})$

base case

What is $P(n)$?
Base case. We must prove $\forall p \in \mathbb{N} . f a c t i(0, p)=0$! $\cdot p$. Trivial. Inductive step. Consider arbitrary $\mathfrak{n} \in \mathbb{N}$. We must establish
$\underbrace{\forall p \in \mathbb{N} . f \operatorname{acti}(n, p)=n!\cdot p}_{\text {induction hypothesis }} \Rightarrow \underbrace{\forall p \in \mathbb{N} . f \operatorname{acti}(n+1, p)=(n+1)!\cdot p}_{P(n+1)}$

Example cont'd

Assume the induction hypothesis:

$$
\forall p^{\prime} \in \mathbb{N} . f a c t i\left(n, p^{\prime}\right)=n!\cdot p^{\prime} \quad \text { (Ind.hyp.) }
$$

Consider arbitrary $p \in \mathbb{N}$.

$$
\begin{aligned}
& \operatorname{facti}(n+1, p) & & \\
= & \operatorname{facti}(n,(n+1) \cdot p) & & \text { Case } 2, \text { as } n+1 \neq 0 \\
= & n!\cdot(n+1) \cdot p & & \text { Ind.hyp., } p^{\prime} \mapsto(n+1) \cdot p \\
= & (n+1)!\cdot p & &
\end{aligned}
$$

which establishes the inductive step.
Hence $\forall \mathrm{n} \in \mathbb{N} \forall \mathrm{p} \in \mathbb{N}$.facti $(\mathrm{n}, \mathrm{p})=\mathrm{n}!\cdot p$, by the induction rule.

Structural induction over lists

The declaration
datatype 'a list = Nil | :: of 'a * 'a list denotes an inductive definition of lists (of type 'a)

- [] is a list
- if x is an element and x s is a list, then $x:: x$ is a list
- lists can be generated by above rules only

The following structural induction rule is therefore sound:

1. $P(\square)$ base case
2. $\forall x s . \forall x(P(x s) \Rightarrow P(x:: x s)) \quad$ inductive step
$\forall x s . P(x s)$

Example

```
fun [] @ ys = ys | (x::xs) @ ys = x::(xs @ ys);
fun len [] = 0 | len (_::xs) = 1+len xs;
```

We prove: $\forall x$ s.len $(x s @ y s)=\operatorname{len}(x s)+\operatorname{len}(y s)$
Base case: $\operatorname{len}([@ y s)=\operatorname{len}(y s)=0+\operatorname{len}(y s)=\operatorname{len}(\square)+\operatorname{len}(y s)$ Inductive step:

$$
\begin{array}{rlrl}
& \operatorname{len}((x:: x s) @ y s) & \\
= & \operatorname{len}(x::(x s @ y s)) & & \text { def.append } \\
= & 1+\operatorname{len}(x s @ y s) & & \text { def.len } \\
= & 1+(\operatorname{len}(x s)+\operatorname{len}(y s)) & & \text { ind.hyp. } \\
= & (1+\operatorname{len}(x s))+\operatorname{len}(y s) & & \text { arith. } \\
= & \operatorname{len}(x:: x s)+\operatorname{len}(y s) & & \text { def.len }
\end{array}
$$

Exercises

Prove

- rev(xs @ ys) = rev(ys) @ rev(xs)
where

$$
\begin{aligned}
\text { fun rev [] } & =[] \\
\mid & \text { rev (x::xs) }
\end{aligned}=\text { rev xs @ [x] }
$$

$$
\text { (* Case } 1 \text { *) }
$$

$$
\text { (* Case } 2 \text { *) }
$$

Exercises

Prove

- rev(xs @ $y s)=r e v(y s)$ @ rev(xs)
where

$$
\left.\begin{array}{rl}
\text { fun rev [] } & =[] \\
& \text { rev }(x: x s)
\end{array}\right) \text { rev xs @ [x] }
$$

(* Case 1 *)
(* Case 2 *)

Did you (need to) prove

- xs @ [] = xs
- xs @ (xs @ zs) = (xs @ ys) @ zs ?

Exercises

Prove

- rev(xs @ ys) $=r e v(y s)$ @ rev(xs)
where

$$
\begin{array}{lll}
\text { fun rev [] } & =[] & (* \text { Case } 1 *) \\
\quad \left\lvert\, \begin{array}{ll}
\text { rev }(x:: x s) & =\text { rev xs @ }[x]
\end{array}\right. & (* \text { Case } 2 *)
\end{array}
$$

Did you (need to) prove

- xs @ [] = xs
- xs @ (ys @ zs) = (xs @ ys) @ zs ?

Can you prove correctness of merge using previous ind. rule?

Well-founded relation

Let R be a binary relation on A, i.e. $R \subseteq A \times A$.
An element $m \in X \subseteq A$ is minimal in X if for no element $x \in X: x R m$.
A binary relation $R \subseteq A \times A$ is well-founded if

- every non-empty subset $X \subseteq A$ has a minimal element.

Equivalent formulation:

- A contains no countable infinite descending chains: i.e there is no infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ of elements of A such that $x_{i+1} R x_{i}$.

Well-founded induction

Given irreflexive, well-founded R on X .
Principle of well-founded induction:
$\overbrace{\forall y \in X .((\forall x \in X . x R y \Rightarrow P(x)) \Rightarrow P(y))}^{\text {premise }}$

$$
\forall y \in X . P(y)
$$

Well-founded induction

Given irreflexive, well-founded R on X .
Principle of well-founded induction:

Principle is sound because:
Suppose premise is true and $\mathrm{E}=\{e \in \mathrm{X} \mid \neg \mathrm{P}(e)\} \neq \emptyset$.
We derive a contradiction as follows:

- E has a minimal element $m \in E$ since R is well-founded and $\neg P(m)$
- x Rm implies $x \notin \mathrm{E}$, i.e. $\mathrm{P}(x)$ holds, since m is minimal in E
- $\mathrm{P}(\mathrm{m})$ by the premise as $\forall x \in X . x R m \Rightarrow P(x)$

Examples

The previous induction principles are specializations:

- Natural numbers, with $a<{ }_{s} b$ iff $b=a+1$.
- Lists, with $x s \prec_{\mathrm{tl}} y s$ iff $x s=\operatorname{tail}(y s)$.

A few other examples:

- List, with prefix ordering \prec
- List, with lexicographical ordering \prec_{L}
- Trees, with sub-tree ordering
- $\mathbb{N} \times \mathbb{N}$ with $(n, p)<^{\prime}\left(n^{\prime}, p^{\prime}\right)$ iff $n+1=n^{\prime}$
- List \times List with (xs,ys) <" (xs', ys') iff length $(x s)+$ length $(y s)<$ length $\left(x s^{\prime}\right)+$ length $\left(y s^{\prime}\right)$

Exercise

- Redo proof for facti using well-founded induction using the relation $(n, p)<^{\prime}\left(n^{\prime}, p^{\prime}\right)$ iff $n+1=n^{\prime}$ on $\mathbb{N} \times \mathbb{N}$.

Notice that ind. hyp. can be simplified.

- Consider a proof for merge (property M) using well-founded induction on the basis of: List \times List with (xs, ys) $<^{\prime \prime}\left(x^{\prime}, y s^{\prime}\right)$ iff length $(x s)+$ length $(y s)<$ length $\left(x s^{\prime}\right)+$ length $\left(y^{\prime}\right)$
Formulate the main proof steps. (You do not need to complete them.)

Structural induction on Trees

Inductive definition of binary trees:

$$
\text { datatype 'a tree }=\mathrm{Lf} \mid \mathrm{Br} \text { of 'a * 'a tree * 'a tre }
$$ and an associated induction rule:

1. $P(L f)$
2. $\forall \mathrm{t}_{1}, \mathrm{t}_{2} . \forall \mathrm{n} .\left(\mathrm{P}\left(\mathrm{t}_{1}\right) \wedge \mathrm{P}\left(\mathrm{t}_{2}\right) \Rightarrow \mathrm{P}(\mathrm{Br}(\mathrm{n}, \mathrm{t} 1, \mathrm{t} 2))\right.$ inductive step $\forall \mathrm{t} . \mathrm{P}(\mathrm{t})$
base case

Example

$$
\begin{aligned}
& \text { fun count Lf }=0 \\
& \mid \operatorname{count}(\operatorname{Br}(\ldots, t 1, t 2))=1+\text { count t1 + count t2; } \\
& \text { fun depth Lf }=0 \\
& \mid \operatorname{depth}(\operatorname{Br}(\mathrm{n}, \mathrm{t} 1, \mathrm{t} 2))= \\
& 1+\text { Int.max(depth } t 1 \text {, depth } t 2)
\end{aligned}
$$

Property: for every binary tree t :

$$
\operatorname{count}(\mathrm{t}) \leq 2^{\operatorname{depth}(\mathrm{t})}-1
$$

Example cont'd: proof

- by structural induction over trees

Base case:

$$
\operatorname{count}(L f)=0=2^{\operatorname{depth}(L f)}-1
$$

Inductive step:

$$
\begin{array}{rll}
& \operatorname{count}\left(\operatorname{Br}\left(n, t_{1}, t_{2}\right)\right) & \\
= & 1+\operatorname{count}\left(t_{1}\right)+\operatorname{count}\left(t_{2}\right) & \text { def. count } \\
\leq & 1+\left(2^{\operatorname{depth}\left(t_{1}\right)}-1\right)+\left(2^{\operatorname{depth}\left(t_{2}\right)}-1\right) & \text { ind.hyp. } \\
\leq & 2^{\max \left(\operatorname{depth}\left(t_{1}\right), \operatorname{depth}\left(t_{2}\right)\right)}+2^{\max \left(\operatorname{depth}\left(t_{1}\right), \operatorname{depth}\left(t_{2}\right)\right)}-1 & \text { arith. } \\
= & 2^{1+\max \left(\operatorname{depth}\left(t_{1}\right), \operatorname{depth}\left(t_{2}\right)\right.}-1 & \text { arith. } \\
= & 2^{\operatorname{depth}\left(\operatorname{Br}\left(n, t_{1}, t_{2}\right)\right)}-1 & \text { def. depth }
\end{array}
$$

Exercise

```
fun postorder Lf 
                postorder t1 @ postorder t2 @ [n];
fun preorder Lf = []
    | preorder(Br(n,t1,t2)) =
        n :: preorder t1 @ preorder t2;
fun reflect Lf = Lf
    | reflect(Br(n,t1,t2)) =
        Br(n, reflect t2, reflect t1);
```

Prove: for every binary tree t :

$$
\operatorname{postorder}(\operatorname{reflect}(\mathrm{t}))=\operatorname{rev}(\operatorname{preorder}(\mathrm{t}))
$$

